These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30151965)

  • 21. Cultivable gut bacteria provide a pathway for adaptation of Chrysolina herbacea to Mentha aquatica volatiles.
    Pizzolante G; Cordero C; Tredici SM; Vergara D; Pontieri P; Del Giudice L; Capuzzo A; Rubiolo P; Kanchiswamy CN; Zebelo SA; Bicchi C; Maffei ME; Alifano P
    BMC Plant Biol; 2017 Mar; 17(1):30. PubMed ID: 28249605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Host Bias in Diet-Source Microbiome Transmission in Wild Cohabitating Herbivores: New Knowledge for the Evolution of Herbivory and Plant Defense.
    Zhu L; Zhang Y; Cui X; Zhu Y; Dai Q; Chen H; Liu G; Yao R; Yang Z
    Microbiol Spectr; 2021 Sep; 9(1):e0075621. PubMed ID: 34406815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Jasmonic Acid and Ethylene Signaling Pathways Regulate Glucosinolate Levels in Plants During Rhizobacteria-Induced Systemic Resistance Against a Leaf-Chewing Herbivore.
    Pangesti N; Reichelt M; van de Mortel JE; Kapsomenou E; Gershenzon J; van Loon JJ; Dicke M; Pineda A
    J Chem Ecol; 2016 Dec; 42(12):1212-1225. PubMed ID: 27848154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How interactions with plant chemicals shape insect genomes.
    Gloss AD; Abbot P; Whiteman NK
    Curr Opin Insect Sci; 2019 Dec; 36():149-156. PubMed ID: 31698152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plant secondary chemistry mediates the performance of a nutritional symbiont associated with a tree-killing herbivore.
    Davis TS; Hofstetter RW
    Ecology; 2012 Feb; 93(2):421-9. PubMed ID: 22624323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parasitic wasp-associated symbiont affects plant-mediated species interactions between herbivores.
    Cusumano A; Zhu F; Volkoff AN; Verbaarschot P; Bloem J; Vogel H; Dicke M; Poelman EH
    Ecol Lett; 2018 Jul; 21(7):957-967. PubMed ID: 29656523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Museum specimens provide novel insights into changing plant-herbivore interactions.
    Meineke EK; Davies TJ
    Philos Trans R Soc Lond B Biol Sci; 2018 Nov; 374(1763):. PubMed ID: 30455211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Olfactory Neuroecology of Herbivory, Hostplant Selection and Plant-Pollinator Interactions.
    Ho WW; Riffell JA
    Integr Comp Biol; 2016 Nov; 56(5):856-864. PubMed ID: 27471226
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tritrophic Interactions: Microbe-Mediated Plant Effects on Insect Herbivores.
    Shikano I; Rosa C; Tan CW; Felton GW
    Annu Rev Phytopathol; 2017 Aug; 55():313-331. PubMed ID: 28590879
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Altering Plant Defenses: Herbivore-Associated Molecular Patterns and Effector Arsenal of Chewing Herbivores.
    Basu S; Varsani S; Louis J
    Mol Plant Microbe Interact; 2018 Jan; 31(1):13-21. PubMed ID: 28840787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of the insect gut microbiota on ecology, evolution, and industry.
    Jang S; Kikuchi Y
    Curr Opin Insect Sci; 2020 Oct; 41():33-39. PubMed ID: 32634703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluating insect-microbiomes at the plant-insect interface.
    Casteel CL; Hansen AK
    J Chem Ecol; 2014 Jul; 40(7):836-47. PubMed ID: 25052911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological and microbial adjustments to diet quality permit facultative herbivory in an omnivorous lizard.
    Kohl KD; Brun A; Magallanes M; Brinkerhoff J; Laspiur A; Acosta JC; Bordenstein SR; Caviedes-Vidal E
    J Exp Biol; 2016 Jun; 219(Pt 12):1903-12. PubMed ID: 27307545
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct and indirect chemical defences against insects in a multitrophic framework.
    Gols R
    Plant Cell Environ; 2014 Aug; 37(8):1741-52. PubMed ID: 24588731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phylogenetic dispersion of host use in a tropical insect herbivore community.
    Weiblen GD; Webb CO; Novotny V; Basset Y; Miller SE
    Ecology; 2006 Jul; 87(7 Suppl):S62-75. PubMed ID: 16922303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Made for Each Other: Ascomycete Yeasts and Insects.
    Blackwell M
    Microbiol Spectr; 2017 Jun; 5(3):. PubMed ID: 28597823
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of rhizosphere microbes outweighs host plant genetics in reducing insect herbivory.
    Hubbard CJ; Li B; McMinn R; Brock MT; Maignien L; Ewers BE; Kliebenstein D; Weinig C
    Mol Ecol; 2019 Apr; 28(7):1801-1811. PubMed ID: 30582660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system.
    Endara MJ; Coley PD; Ghabash G; Nicholls JA; Dexter KG; Donoso DA; Stone GN; Pennington RT; Kursar TA
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7499-E7505. PubMed ID: 28827317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Variability in plant nutrients reduces insect herbivore performance.
    Wetzel WC; Kharouba HM; Robinson M; Holyoak M; Karban R
    Nature; 2016 Nov; 539(7629):425-427. PubMed ID: 27749815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. What do we know about biological nitrogen fixation in insects? Evidence and implications for the insect and the ecosystem.
    Bar-Shmuel N; Behar A; Segoli M
    Insect Sci; 2020 Jun; 27(3):392-403. PubMed ID: 31207108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.