These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30152199)

  • 1. Associative and Dissociative Processes in Non-Covalent Polymer-Mediated Intracellular Protein Delivery.
    Posey ND; Tew GN
    Chem Asian J; 2018 Nov; 13(22):3351-3365. PubMed ID: 30152199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Cargo Binding Strength in Polymer-Mediated Intracellular Protein Delivery.
    Posey ND; Hango CR; Minter LM; Tew GN
    Bioconjug Chem; 2018 Aug; 29(8):2679-2690. PubMed ID: 30080401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug delivery's quest for polymers: Where are the frontiers?
    Merkle HP
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt B):293-303. PubMed ID: 26614554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empowering the Potential of Cell-Penetrating Peptides for Targeted Intracellular Delivery via Molecular Self-Assembly.
    Shi Y; Conde J; Azevedo HS
    Adv Exp Med Biol; 2017; 1030():265-278. PubMed ID: 29081058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide-mediated delivery: an overview of pathways for efficient internalization.
    Pae J; Pooga M
    Ther Deliv; 2014 Nov; 5(11):1203-22. PubMed ID: 25491671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence segregation improves non-covalent protein delivery.
    Sgolastra F; Backlund CM; Ilker Ozay E; deRonde BM; Minter LM; Tew GN
    J Control Release; 2017 May; 254():131-136. PubMed ID: 28363520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. When cationic cell-penetrating peptides meet hydrocarbons to enhance in-cell cargo delivery.
    Di Pisa M; Chassaing G; Swiecicki JM
    J Pept Sci; 2015 May; 21(5):356-69. PubMed ID: 25787823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cationic polymer nanoparticles and nanogels: from synthesis to biotechnological applications.
    Ramos J; Forcada J; Hidalgo-Alvarez R
    Chem Rev; 2014 Jan; 114(1):367-428. PubMed ID: 24003911
    [No Abstract]   [Full Text] [Related]  

  • 9. Energy-independent intracellular gene delivery mediated by polymeric biomimetics of cell-penetrating peptides.
    Chae SY; Kim HJ; Lee MS; Jang YL; Lee Y; Lee SH; Lee K; Kim SH; Kim HT; Chi SC; Park TG; Jeong JH
    Macromol Biosci; 2011 Sep; 11(9):1169-74. PubMed ID: 21800428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual stimuli-responsive polymeric hollow nanogels designed as carriers for intracellular triggered drug release.
    Chiang WH; Ho VT; Huang WC; Huang YF; Chern CS; Chiu HC
    Langmuir; 2012 Oct; 28(42):15056-64. PubMed ID: 23036055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoresponsive hyaluronic acid nanogels as hydrophobic drug carrier to macrophages.
    Fernandes Stefanello T; Szarpak-Jankowska A; Appaix F; Louage B; Hamard L; De Geest BG; van der Sanden B; Nakamura CV; Auzély-Velty R
    Acta Biomater; 2014 Nov; 10(11):4750-4758. PubMed ID: 25110287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular and transdermal protein delivery mediated by non-covalent interactions with a synthetic guanidine-rich molecular carrier.
    Im J; Das S; Jeong D; Kim CJ; Lim HS; Kim KH; Chung SK
    Int J Pharm; 2017 Aug; 528(1-2):646-654. PubMed ID: 28634138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyaluronic acid/poly(β-amino ester) polymer nanogels for cancer-cell-specific NIR fluorescence switch.
    Park HS; Lee JE; Cho MY; Hong JH; Cho SH; Lim YT
    Macromol Rapid Commun; 2012 Sep; 33(18):1549-55. PubMed ID: 22753358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding and Release between Polymeric Carrier and Protein Drug: pH-Mediated Interplay of Coulomb Forces, Hydrogen Bonding, van der Waals Interactions, and Entropy.
    De Luca S; Chen F; Seal P; Stenzel MH; Smith SC
    Biomacromolecules; 2017 Nov; 18(11):3665-3677. PubMed ID: 28880549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent Labeling-Mass Spectrometry Provides a Molecular Understanding of Noncovalent Polymer-Protein Complexation.
    Davis HC; Pan X; Kirsch ZJ; Vachet RW; Tew GN
    ACS Biomater Sci Eng; 2022 Jun; 8(6):2489-2499. PubMed ID: 35608244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the importance of electrostatic interactions between cell penetrating peptides and membranes: a pathway toward tumor cell selectivity?
    Jobin ML; Alves ID
    Biochimie; 2014 Dec; 107 Pt A():154-9. PubMed ID: 25107405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional, star polymeric molecular carriers, built from biodegradable microgel/nanogel cores.
    Syrett JA; Haddleton DM; Whittaker MR; Davis TP; Boyer C
    Chem Commun (Camb); 2011 Feb; 47(5):1449-51. PubMed ID: 21180748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The development of cell-penetrating peptides in drug delivery system].
    Fan B; Jin MJ; Huang W; Wang QM; Gao ZG
    Yao Xue Xue Bao; 2016 Feb; 51(2):264-71. PubMed ID: 29856580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual pH-triggered multistage drug delivery systems based on host-guest interaction-associated polymeric nanogels.
    Zan M; Li J; Luo S; Ge Z
    Chem Commun (Camb); 2014 Jul; 50(58):7824-7. PubMed ID: 24909859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein Binding and Release by Polymeric Cell-Penetrating Peptide Mimics.
    Davis HC; Posey ND; Tew GN
    Biomacromolecules; 2022 Jan; 23(1):57-66. PubMed ID: 34879198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.