These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 3015233)

  • 1. Interrelation between gluconeogenesis and hepatic protein synthesis.
    Ayuso MS; Vega P; Manchón CG; Parrilla R
    Biochim Biophys Acta; 1986 Aug; 883(1):33-40. PubMed ID: 3015233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responsiveness to glucagon by isolated rat hepatocytes controlled by the redox state of the cytosolic nicotinamide--adenine dinucleotide couple acting on adenosine 3':5'-cyclic monophosphate phosphodiesterase.
    Clark MG; Jarrett IG
    Biochem J; 1978 Dec; 176(3):805-16. PubMed ID: 218554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiologic significance of glucocorticoids and insulin in the regulation of hepatic gluconeogenesis during starvation in rats.
    Seitz HJ; Kaiser M; Krone W; Tarnowski W
    Metabolism; 1976 Dec; 25(12):1545-55. PubMed ID: 186690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents.
    Pryor HJ; Smyth JE; Quinlan PT; Halestrap AP
    Biochem J; 1987 Oct; 247(2):449-57. PubMed ID: 3426547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of adenosine 3',5'-monophosphate in the control of gluconeogenesis.
    Exton JH; Mallette LE; Jefferson LS; Wong EH; Friedmann N; Park CR
    Am J Clin Nutr; 1970 Jul; 23(7):993-1003. PubMed ID: 4318411
    [No Abstract]   [Full Text] [Related]  

  • 6. Reciprocal changes in gluconeogenesis and ureagenesis induced by fatty acid oxidation.
    Martín-Requero A; Ciprés G; Rivas T; Ayuso MS; Parrilla R
    Metabolism; 1993 Dec; 42(12):1573-82. PubMed ID: 8246772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanism of the glucagon-induced inhibition of hepatic protein synthesis.
    Requero AM; Díaz JP; Ayuso-Parrilla MS; Parrilla R
    Arch Biochem Biophys; 1979 Jun; 195(1):223-34. PubMed ID: 224812
    [No Abstract]   [Full Text] [Related]  

  • 8. Inhibition of glucagon effects in perfused rat liver by (+)decanoylcarnitine.
    Williamson JR; Browning ET; Thurman RG; Scholz R
    J Biol Chem; 1969 Sep; 244(18):5055-64. PubMed ID: 4309991
    [No Abstract]   [Full Text] [Related]  

  • 9. Role of the state of reduction of the NAD system on the regulation of hepatic protein synthesis in the rat in vivo.
    Garcia-Esteller SC; Robles SS; Martin-Requero A; Ayuso-Parrilla MS; Parrilla R
    Int J Biochem; 1982; 14(7):615-20. PubMed ID: 7106360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism for the stimulation in vivo of hepatic gluconeogenesis by glucagon.
    Williamson JR
    Biochem J; 1966 Oct; 101(1):11C-14C. PubMed ID: 4291353
    [No Abstract]   [Full Text] [Related]  

  • 11. Control of hepatic gluconeogenesis: role of fatty acid oxidation.
    González-Manchón C; Ayuso MS; Parrilla R
    Arch Biochem Biophys; 1989 May; 271(1):1-9. PubMed ID: 2712567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic effects of chlorpropamide: inhibition of glucagon-stimulated gluconeogenesis in perfused livers of fasted rats.
    Blumenthal SA; Whitmer KR
    Diabetes; 1979 Jul; 28(7):646-50. PubMed ID: 221298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of endogenous fatty acids in the control of hepatic gluconeogenesis.
    González-Manchón C; Martín-Requero A; Ayuso MS; Parrilla R
    Arch Biochem Biophys; 1992 Jan; 292(1):95-101. PubMed ID: 1727653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. THE EFFECT OF DIFFERENT HORMONAL CONDITIONS ON THE CONCENTRATION AND OXIDOREDUCTION STATE OF THE NICOTINAMIDE NUCLEOTIDES OF RAT LIVER.
    GREENBAUM AL; CLARK JB
    Biochem J; 1965 Apr; 95(1):167-79. PubMed ID: 14333553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucocorticoid hormones have a permissive role in the phosphorylation of L-type pyruvate kinase by glucagon.
    Postle AD; Bloxham DP
    Eur J Biochem; 1982 May; 124(1):103-8. PubMed ID: 7084219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanism of the so-called uncoupling effect of medium- and short-chain fatty acids.
    Schönfeld P; Wojtczak AB; Geelen MJ; Kunz W; Wojtczak L
    Biochim Biophys Acta; 1988 Dec; 936(3):280-8. PubMed ID: 3196710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate.
    Siess EA; Brocks DG; Lattke HK; Wieland OH
    Biochem J; 1977 Aug; 166(2):225-35. PubMed ID: 199159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gluconeogenesis in isolated intact lamb liver cells. Effects of glucagon and butyrate.
    Clark MG; Filsell OH; Jarrett IG
    Biochem J; 1976 Jun; 156(3):671-80. PubMed ID: 949349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose inhibition of epinephrine stimulation of hepatic gluconeogenesis by blockade of the alpha-receptor function.
    Kneer NM; Bosch AL; Clark MG; Lardy HA
    Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4523-7. PubMed ID: 4155070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation by insulin of gluconeogenesis in isolated rat hepatocytes.
    Claus TH; Pilkis SJ
    Biochim Biophys Acta; 1976 Feb; 421(2):246-62. PubMed ID: 175843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.