These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. All-polymer solar cells with 3.3% efficiency based on naphthalene diimide-selenophene copolymer acceptor. Earmme T; Hwang YJ; Murari NM; Subramaniyan S; Jenekhe SA J Am Chem Soc; 2013 Oct; 135(40):14960-3. PubMed ID: 24083488 [TBL] [Abstract][Full Text] [Related]
4. Influence of Backbone Regioregularity on High-Mobility Conjugated Polymers Based on Alkylated Dithienylacrylonitrile. Li D; Wang Q; Huang J; Wei C; Zhang W; Wang L; Yu G ACS Appl Mater Interfaces; 2019 Nov; 11(46):43416-43424. PubMed ID: 31645100 [TBL] [Abstract][Full Text] [Related]
5. High-Performance All-Polymer Solar Cells Achieved by Fused Perylenediimide-Based Conjugated Polymer Acceptors. Yin Y; Yang J; Guo F; Zhou E; Zhao L; Zhang Y ACS Appl Mater Interfaces; 2018 May; 10(18):15962-15970. PubMed ID: 29660294 [TBL] [Abstract][Full Text] [Related]
6. Electron Acceptors With a Truxene Core and Perylene Diimide Branches for Organic Solar Cells: The Effect of Ring-Fusion. Lin K; Wang S; Wang Z; Yin Q; Liu X; Jia J; Jia X; Luo P; Jiang X; Duan C; Huang F; Cao Y Front Chem; 2018; 6():328. PubMed ID: 30234096 [TBL] [Abstract][Full Text] [Related]
7. The role of regioregularity, crystallinity, and chain orientation on electron transport in a high-mobility n-type copolymer. Steyrleuthner R; Di Pietro R; Collins BA; Polzer F; Himmelberger S; Schubert M; Chen Z; Zhang S; Salleo A; Ade H; Facchetti A; Neher D J Am Chem Soc; 2014 Mar; 136(11):4245-56. PubMed ID: 24524296 [TBL] [Abstract][Full Text] [Related]
8. Effects of a Fluorinated Donor Polymer on the Morphology, Photophysics, and Performance of All-Polymer Solar Cells Based on Naphthalene Diimide-Arylene Copolymer Acceptors. Tran DK; Kolhe NB; Hwang YJ; Kuzuhara D; Koganezawa T; Jenekhe SA ACS Appl Mater Interfaces; 2020 Apr; 12(14):16490-16502. PubMed ID: 32180406 [TBL] [Abstract][Full Text] [Related]
9. Comparison of Three n-Type Copolymers Based on Benzodithiophene and Naphthalene Diimide/Perylene Diimide/Fused Perylene Diimides for All-Polymer Solar Cells Application. Yang J; Yin Y; Chen F; Zhang Y; Xiao B; Zhao L; Zhou E ACS Appl Mater Interfaces; 2018 Jul; 10(27):23263-23269. PubMed ID: 29921122 [TBL] [Abstract][Full Text] [Related]
10. Efficient Organic Solar Cells Based on Non-Fullerene Acceptors with Two Planar Thiophene-Fused Perylene Diimide Units. Liu J; Lu H; Liu Y; Zhang J; Li C; Xu X; Bo Z ACS Appl Mater Interfaces; 2020 Mar; 12(9):10746-10754. PubMed ID: 32054268 [TBL] [Abstract][Full Text] [Related]
11. A polymer acceptor with an optimal LUMO energy level for all-polymer solar cells. Ding Z; Long X; Dou C; Liu J; Wang L Chem Sci; 2016 Sep; 7(9):6197-6202. PubMed ID: 30034760 [TBL] [Abstract][Full Text] [Related]
12. Novel Star-Shaped Helical Perylene Diimide Electron Acceptors for Efficient Additive-Free Nonfullerene Organic Solar Cells. Wu M; Yi JP; Chen L; He G; Chen F; Sfeir MY; Xia J ACS Appl Mater Interfaces; 2018 Aug; 10(33):27894-27901. PubMed ID: 30052417 [TBL] [Abstract][Full Text] [Related]
13. 9,9'-Bifluorenylidene-Core Perylene Diimide Acceptors for As-Cast Non-Fullerene Organic Solar Cells: The Isomeric Effect on Optoelectronic Properties. Zhao Y; Wang H; Xia S; Zhou F; Luo Z; Luo J; He F; Yang C Chemistry; 2018 Mar; 24(16):4149-4156. PubMed ID: 29336500 [TBL] [Abstract][Full Text] [Related]
14. High-Performance Solution-Processed Non-Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide Acceptor. Meng D; Sun D; Zhong C; Liu T; Fan B; Huo L; Li Y; Jiang W; Choi H; Kim T; Kim JY; Sun Y; Wang Z; Heeger AJ J Am Chem Soc; 2016 Jan; 138(1):375-80. PubMed ID: 26652276 [TBL] [Abstract][Full Text] [Related]
15. Porphyrin Acceptors with Two Perylene Diimide Dimers for Organic Solar Cells. Pan X; Wu J; Xiao L; Yap B; Xia R; Peng X ChemSusChem; 2021 Sep; 14(17):3614-3621. PubMed ID: 34107177 [TBL] [Abstract][Full Text] [Related]
16. Regioregular Narrow-Bandgap n-Type Polymers with High Electron Mobility Enabling Highly Efficient All-Polymer Solar Cells. Sun H; Liu B; Ma Y; Lee JW; Yang J; Wang J; Li Y; Li B; Feng K; Shi Y; Zhang B; Han D; Meng H; Niu L; Kim BJ; Zheng Q; Guo X Adv Mater; 2021 Sep; 33(37):e2102635. PubMed ID: 34338383 [TBL] [Abstract][Full Text] [Related]
17. Introduction of Siloxane-Terminated Side Chains into Semiconducting Polymers To Tune Phase Separation with Nonfullerene Acceptor for Polymer Solar Cells. Wang Q; Hu Z; Wu Z; Lin Y; Zhang L; Liu L; Ma Y; Cao Y; Chen J ACS Appl Mater Interfaces; 2020 Jan; 12(4):4659-4672. PubMed ID: 31898451 [TBL] [Abstract][Full Text] [Related]
18. Ternary All-Polymer Solar Cells With 8.5% Power Conversion Efficiency and Excellent Thermal Stability. Liu X; Zhang C; Pang S; Li N; Brabec CJ; Duan C; Huang F; Cao Y Front Chem; 2020; 8():302. PubMed ID: 32426324 [TBL] [Abstract][Full Text] [Related]
19. High Performance All-Polymer Solar Cells by Synergistic Effects of Fine-Tuned Crystallinity and Solvent Annealing. Li Z; Xu X; Zhang W; Meng X; Ma W; Yartsev A; Inganäs O; Andersson MR; Janssen RA; Wang E J Am Chem Soc; 2016 Aug; 138(34):10935-44. PubMed ID: 27479751 [TBL] [Abstract][Full Text] [Related]
20. Contrasting performance of donor-acceptor copolymer pairs in ternary blend solar cells and two-acceptor copolymers in binary blend solar cells. Khlyabich PP; Rudenko AE; Burkhart B; Thompson BC ACS Appl Mater Interfaces; 2015 Feb; 7(4):2322-30. PubMed ID: 25590225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]