BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 30152752)

  • 1. Arabidopsis RNA processing factor SERRATE regulates the transcription of intronless genes.
    Speth C; Szabo EX; Martinho C; Collani S; Zur Oven-Krockhaus S; Richter S; Droste-Borel I; Macek B; Stierhof YD; Schmid M; Liu C; Laubinger S
    Elife; 2018 Aug; 7():. PubMed ID: 30152752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intron splicing suppresses RNA silencing in Arabidopsis.
    Christie M; Croft LJ; Carroll BJ
    Plant J; 2011 Oct; 68(1):159-67. PubMed ID: 21689169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome-Wide Identification of RNA Targets of Arabidopsis SERINE/ARGININE-RICH45 Uncovers the Unexpected Roles of This RNA Binding Protein in RNA Processing.
    Xing D; Wang Y; Hamilton M; Ben-Hur A; Reddy AS
    Plant Cell; 2015 Dec; 27(12):3294-308. PubMed ID: 26603559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-terminal domain of Arabidopsis RNA polymerase II.
    Hajheidari M; Farrona S; Huettel B; Koncz Z; Koncz C
    Plant Cell; 2012 Apr; 24(4):1626-42. PubMed ID: 22547781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SERRATE is required for intron suppression of RNA silencing in Arabidopsis.
    Christie M; Carroll BJ
    Plant Signal Behav; 2011 Dec; 6(12):2035-7. PubMed ID: 22112452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SERRATE interacts with the nuclear exosome targeting (NEXT) complex to degrade primary miRNA precursors in Arabidopsis.
    Bajczyk M; Lange H; Bielewicz D; Szewc L; Bhat SS; Dolata J; Kuhn L; Szweykowska-Kulinska Z; Gagliardi D; Jarmolowski A
    Nucleic Acids Res; 2020 Jul; 48(12):6839-6854. PubMed ID: 32449937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SERRATE: a key factor in coordinated RNA processing in plants.
    Jozwiak M; Bielewicz D; Szweykowska-Kulinska Z; Jarmolowski A; Bajczyk M
    Trends Plant Sci; 2023 Jul; 28(7):841-853. PubMed ID: 37019716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spliceosome disassembly factors ILP1 and NTR1 promote miRNA biogenesis in Arabidopsis thaliana.
    Wang J; Chen S; Jiang N; Li N; Wang X; Li Z; Li X; Liu H; Li L; Yang Y; Ni T; Yu C; Ma J; Zheng B; Ren G
    Nucleic Acids Res; 2019 Sep; 47(15):7886-7900. PubMed ID: 31216029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SERRATE: a new player on the plant microRNA scene.
    Lobbes D; Rallapalli G; Schmidt DD; Martin C; Clarke J
    EMBO Rep; 2006 Oct; 7(10):1052-8. PubMed ID: 16977334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of alternative splicing events regulated by an Arabidopsis serine/arginine-like protein, atSR45a, in response to high-light stress using a tiling array.
    Yoshimura K; Mori T; Yokoyama K; Koike Y; Tanabe N; Sato N; Takahashi H; Maruta T; Shigeoka S
    Plant Cell Physiol; 2011 Oct; 52(10):1786-805. PubMed ID: 21862516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time.
    Quesada V; Macknight R; Dean C; Simpson GG
    EMBO J; 2003 Jun; 22(12):3142-52. PubMed ID: 12805228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A protein complex regulates RNA processing of intronic heterochromatin-containing genes in
    Duan CG; Wang X; Zhang L; Xiong X; Zhang Z; Tang K; Pan L; Hsu CC; Xu H; Tao WA; Zhang H; Zhu JK
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):E7377-E7384. PubMed ID: 28808009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The RNA-binding protein HOS5 and serine/arginine-rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis.
    Chen T; Cui P; Xiong L
    Nucleic Acids Res; 2015 Sep; 43(17):8283-98. PubMed ID: 26227967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arabidopsis Serrate Coordinates Histone Methyltransferases ATXR5/6 and RNA Processing Factor RDR6 to Regulate Transposon Expression.
    Ma Z; Castillo-González C; Wang Z; Sun D; Hu X; Shen X; Potok ME; Zhang X
    Dev Cell; 2018 Jun; 45(6):769-784.e6. PubMed ID: 29920280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global Co-transcriptional Splicing in Arabidopsis and the Correlation with Splicing Regulation in Mature RNAs.
    Li S; Wang Y; Zhao Y; Zhao X; Chen X; Gong Z
    Mol Plant; 2020 Feb; 13(2):266-277. PubMed ID: 31759129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The emergence and evolution of intron-poor and intronless genes in intron-rich plant gene families.
    Liu H; Lyu HM; Zhu K; Van de Peer Y; Max Cheng ZM
    Plant J; 2021 Feb; 105(4):1072-1082. PubMed ID: 33217085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depletion of Arabidopsis SC35 and SC35-like serine/arginine-rich proteins affects the transcription and splicing of a subset of genes.
    Yan Q; Xia X; Sun Z; Fang Y
    PLoS Genet; 2017 Mar; 13(3):e1006663. PubMed ID: 28273088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical roles of RNA-binding proteins in miRNA biogenesis in Arabidopsis.
    Ren G; Yu B
    RNA Biol; 2012 Dec; 9(12):1424-8. PubMed ID: 23135480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulated RNA processing in the control of Arabidopsis flowering.
    Quesada V; Dean C; Simpson GG
    Int J Dev Biol; 2005; 49(5-6):773-80. PubMed ID: 16096981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription beyond borders has downstream consequences.
    Sonmez C; Dean C
    RNA Biol; 2012 Feb; 9(2):143-7. PubMed ID: 22258223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.