These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30153264)

  • 1. Characterization and automatic classification of preterm and term uterine records.
    Jager F; Libenšek S; Geršak K
    PLoS One; 2018; 13(8):e0202125. PubMed ID: 30153264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing Velocity and Directionality of Uterine Electrical Activity for Preterm Birth Prediction Using EHG Surface Records.
    Jager F; Geršak K; Vouk P; Pirnar Ž; Trojner-Bregar A; Lučovnik M; Borovac A
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33419319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peak amplitude of the normalized power spectrum of the electromyogram of the uterus in the low frequency band is an effective predictor of premature birth.
    Pirnar Ž; Jager F; Geršak K
    PLoS One; 2024; 19(9):e0308797. PubMed ID: 39264880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated electrohysterographic detection of uterine contractions for monitoring of pregnancy: feasibility and prospects.
    Muszynski C; Happillon T; Azudin K; Tylcz JB; Istrate D; Marque C
    BMC Pregnancy Childbirth; 2018 May; 18(1):136. PubMed ID: 29739438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep neural network for semi-automatic classification of term and preterm uterine recordings.
    Chen L; Xu H
    Artif Intell Med; 2020 May; 105():101861. PubMed ID: 32505424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and separation of preterm and term spontaneous, induced, and cesarean EHG records.
    Pirnar Ž; Jager F; Geršak K
    Comput Biol Med; 2022 Dec; 151(Pt A):106238. PubMed ID: 36343404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network Theory Based EHG Signal Analysis and its Application in Preterm Prediction.
    Xu J; Wang M; Zhang J; Chen Z; Huang W; Shen G; Zhang M
    IEEE J Biomed Health Inform; 2022 Jul; 26(7):2876-2887. PubMed ID: 34986107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrohysterography during pregnancy: preliminary report.
    Gondry J; Marque C; Duchene J; Cabrol D
    Biomed Instrum Technol; 1993; 27(4):318-24. PubMed ID: 8369867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Prognostic value of chosen parameters of mechanical and bioelectrical uterine activity in prediction of threatening preterm labour].
    Zietek J; Sikora J; Horoba K; Matonia A; Jezewski J; Magnucki J; Kobielska L
    Ginekol Pol; 2009 Mar; 80(3):193-200. PubMed ID: 19382611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing classification of preterm-term birth using continuous wavelet transform and entropy-based methods of electrohysterogram signals.
    Romero-Morales H; Muñoz-Montes de Oca JN; Mora-Martínez R; Mina-Paz Y; Reyes-Lagos JJ
    Front Endocrinol (Lausanne); 2022; 13():1035615. PubMed ID: 36704040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic recognition of uterine contractions with electrohysterogram signals based on the zero-crossing rate.
    Song X; Qiao X; Hao D; Yang L; Zhou X; Xu Y; Zheng D
    Sci Rep; 2021 Jan; 11(1):1956. PubMed ID: 33479344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acquisition and Analysis of Electrohysterogram Signal.
    R P; S SD
    J Med Syst; 2020 Feb; 44(3):66. PubMed ID: 32040634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preliminary Study on the Efficient Electrohysterogram Segments for Recognizing Uterine Contractions with Convolutional Neural Networks.
    Peng J; Hao D; Liu H; Liu J; Zhou X; Zheng D
    Biomed Res Int; 2019; 2019():3168541. PubMed ID: 31737659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An open dataset with electrohysterogram records of pregnancies ending in induced and cesarean section delivery.
    Jager F
    Sci Data; 2023 Oct; 10(1):669. PubMed ID: 37783671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Multichannel Entropy Features and Machine Learning for Early Assessment of Pregnancy Progression Using Electrohysterography.
    Cheng A; Yao Y; Jin Y; Chen C; Vullings R; Xu L; Mischi M
    IEEE Trans Biomed Eng; 2022 Dec; 69(12):3728-3738. PubMed ID: 35604992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Electrohysterogram Recording System for Monitoring Uterine Contraction.
    Hao D; An Y; Qiao X; Qiu Q; Zhou X; Peng J
    J Healthc Eng; 2019; 2019():4230157. PubMed ID: 31354930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relevant Features Selection for Automatic Prediction of Preterm Deliveries from Pregnancy ElectroHysterograhic (EHG) records.
    Sadi-Ahmed N; Kacha B; Taleb H; Kedir-Talha M
    J Med Syst; 2017 Nov; 41(12):204. PubMed ID: 29128973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic semantic segmentation of EHG recordings by deep learning: An approach to a screening tool for use in clinical practice.
    Nieto-Del-Amor F; Ye-Lin Y; Monfort-Ortiz R; Diago-Almela VJ; Modrego-Pardo F; Martinez-de-Juan JL; Hao D; Prats-Boluda G
    Comput Methods Programs Biomed; 2024 Sep; 254():108317. PubMed ID: 38996804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-channel electrohysterography enabled uterine contraction characterization and its effect in delivery assessment.
    Shen J; Liu Y; Zhang M; Pumir A; Mu L; Li B; Xu J
    Comput Biol Med; 2023 Dec; 167():107697. PubMed ID: 37976821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separating sets of term and pre-term uterine EMG records.
    Smrdel A; Jager F
    Physiol Meas; 2015 Feb; 36(2):341-55. PubMed ID: 25612737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.