These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 30153407)

  • 1. Pop-Up Conducting Large-Area Biographene Kirigami.
    Ma R; Wu C; Wang ZL; Tsukruk VV
    ACS Nano; 2018 Oct; 12(10):9714-9720. PubMed ID: 30153407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal and electronic transport characteristics of highly stretchable graphene kirigami.
    Mortazavi B; Lherbier A; Fan Z; Harju A; Rabczuk T; Charlier JC
    Nanoscale; 2017 Nov; 9(42):16329-16341. PubMed ID: 29051943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable Mechanical Metamaterials through Hybrid Kirigami Structures.
    Hwang DG; Bartlett MD
    Sci Rep; 2018 Feb; 8(1):3378. PubMed ID: 29467413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene kirigami.
    Blees MK; Barnard AW; Rose PA; Roberts SP; McGill KL; Huang PY; Ruyack AR; Kevek JW; Kobrin B; Muller DA; McEuen PL
    Nature; 2015 Aug; 524(7564):204-7. PubMed ID: 26222025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kirigami enhances film adhesion.
    Zhao R; Lin S; Yuk H; Zhao X
    Soft Matter; 2018 Mar; 14(13):2515-2525. PubMed ID: 29537019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Written-in conductive patterns on robust graphene oxide biopaper by electrochemical microstamping.
    Hu K; Tolentino LS; Kulkarni DD; Ye C; Kumar S; Tsukruk VV
    Angew Chem Int Ed Engl; 2013 Dec; 52(51):13784-8. PubMed ID: 24214828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kirigami-Inspired Structures for Smart Adhesion.
    Hwang DG; Trent K; Bartlett MD
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6747-6754. PubMed ID: 29359914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a Kirigami Structure with a Large Uniform Deformation Region.
    Taniyama H; Iwase E
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33445722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method.
    Jung MW; Myung S; Kim KW; Song W; Jo YY; Lee SS; Lim J; Park CY; An KS
    Nanotechnology; 2014 Jul; 25(28):285302. PubMed ID: 24971722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly stretchable MoS2 kirigami.
    Hanakata PZ; Qi Z; Campbell DK; Park HS
    Nanoscale; 2016 Jan; 8(1):458-63. PubMed ID: 26628005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated Search and Design of Stretchable Graphene Kirigami Using Machine Learning.
    Hanakata PZ; Cubuk ED; Campbell DK; Park HS
    Phys Rev Lett; 2018 Dec; 121(25):255304. PubMed ID: 30608812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable active kirigami metasheets with more freedom of actuation.
    Tang Y; Li Y; Hong Y; Yang S; Yin J
    Proc Natl Acad Sci U S A; 2019 Dec; 116(52):26407-26413. PubMed ID: 31843912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Stretchable Room-Temperature Self-Healing Conductors Based on Wrinkled Graphene Films for Flexible Electronics.
    Yan S; Zhang G; Jiang H; Li F; Zhang L; Xia Y; Wang Z; Wu Y; Li H
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10736-10744. PubMed ID: 30801171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kirigami-Inspired Inflatables with Programmable Shapes.
    Jin L; Forte AE; Deng B; Rafsanjani A; Bertoldi K
    Adv Mater; 2020 Aug; 32(33):e2001863. PubMed ID: 32627259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous Thermal Response of Graphene Kirigami Induced by Tailored Shape to Uniaxial Tensile Strain: A Molecular Dynamics Study.
    Li H; Cheng G; Liu Y; Zhong D
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31936573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programming shape using kirigami tessellations.
    Choi GPT; Dudte LH; Mahadevan L
    Nat Mater; 2019 Sep; 18(9):999-1004. PubMed ID: 31435070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dramatic Enhancement of Graphene Oxide/Silk Nanocomposite Membranes: Increasing Toughness, Strength, and Young's modulus via Annealing of Interfacial Structures.
    Wang Y; Ma R; Hu K; Kim S; Fang G; Shao Z; Tsukruk VV
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24962-73. PubMed ID: 27580039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced graphene oxide nanoshells for flexible and stretchable conductors.
    Jiang WS; Liu ZB; Xin W; Chen XD; Tian JG
    Nanotechnology; 2016 Mar; 27(9):095301. PubMed ID: 26822121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering by Cuts: How Kirigami Principle Enables Unique Mechanical Properties and Functionalities.
    Tao J; Khosravi H; Deshpande V; Li S
    Adv Sci (Weinh); 2022 Oct; 10(1):e2204733. PubMed ID: 36310142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyvinyl Alcohol/Silk Fibroin/Borax Hydrogel Ionotronics: A Highly Stretchable, Self-Healable, and Biocompatible Sensing Platform.
    Yang N; Qi P; Ren J; Yu H; Liu S; Li J; Chen W; Kaplan DL; Ling S
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23632-23638. PubMed ID: 31117474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.