BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 30153484)

  • 1. Identification of essential yeast genes involved in polyamine resistance.
    Aouida M; Ramotar D
    Gene; 2018 Nov; 677():361-369. PubMed ID: 30153484
    [No Abstract]   [Full Text] [Related]  

  • 2. A Screening Method to Identify Essential Yeast Genes for Responses Towards Spermine.
    Aouida M; Ramotar D
    Methods Mol Biol; 2022; 2377():363-369. PubMed ID: 34709627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SKY1 and IXR1 interactions, their effects on cisplatin and spermine resistance in Saccharomyces cerevisiae.
    Rodríguez Lombardero S; Vizoso Vázquez A; Rodríguez Belmonte E; González Siso MI; Cerdán ME
    Can J Microbiol; 2012 Feb; 58(2):184-8. PubMed ID: 22260231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast response and tolerance to polyamine toxicity involving the drug : H+ antiporter Qdr3 and the transcription factors Yap1 and Gcn4.
    Teixeira MC; Cabrito TR; Hanif ZM; Vargas RC; Tenreiro S; Sá-Correia I
    Microbiology (Reading); 2011 Apr; 157(Pt 4):945-956. PubMed ID: 21148207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of spermine and spermidine effects on Saccharomyces cerevisiae. Polyamine production in different growth conditions and in the presence of interleukin-2.
    Del Carratore R; Bronzetti G; Valenti D
    J Environ Pathol Toxicol Oncol; 1993; 12(3):143-7. PubMed ID: 8189367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel target genes of the yeast regulator Pdr1p: a contribution of the TPO1 gene in resistance to quinidine and other drugs.
    do Valle Matta MA; Jonniaux JL; Balzi E; Goffeau A; van den Hazel B
    Gene; 2001 Jul; 272(1-2):111-9. PubMed ID: 11470516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure of Saccharomyces cerevisiae to acetaldehyde induces sulfur amino acid metabolism and polyamine transporter genes, which depend on Met4p and Haa1p transcription factors, respectively.
    Aranda A; del Olmo ML
    Appl Environ Microbiol; 2004 Apr; 70(4):1913-22. PubMed ID: 15066780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of FAP7, MIG3, TMA19, or YLR392c confers resistance to arsenite on Saccharomyces cerevisiae.
    Takahashi T; Yano T; Zhu J; Hwang GW; Naganuma A
    J Toxicol Sci; 2010 Dec; 35(6):945-6. PubMed ID: 21139346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast response and tolerance to benzoic acid involves the Gcn4- and Stp1-regulated multidrug/multixenobiotic resistance transporter Tpo1.
    Godinho CP; Mira NP; Cabrito TR; Teixeira MC; Alasoo K; Guerreiro JF; Sá-Correia I
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):5005-5018. PubMed ID: 28409382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The MFS-type efflux pump Flr1 induced by Yap1 promotes canthin-6-one resistance in yeast.
    Dejos C; Régnacq M; Bernard M; Voisin P; Bergès T
    FEBS Lett; 2013 Sep; 587(18):3045-51. PubMed ID: 23912082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specificity of polyamine requirements for the replication and maintenance of different double-stranded RNA plasmids in Saccharomyces cerevisiae.
    Tyagi AK; Wickner RB; Tabor CW; Tabor H
    Proc Natl Acad Sci U S A; 1984 Feb; 81(4):1149-53. PubMed ID: 6366799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of Ycg1 or Ydr520c confers resistance to cadmium in Saccharomyces cerevisiae.
    Hwang GW; Sasaki K; Takahashi T; Yamamoto R; Naganuma A
    J Toxicol Sci; 2009 Oct; 34(4):441-3. PubMed ID: 19652468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyamine modulon in yeast-Stimulation of COX4 synthesis by spermidine at the level of translation.
    Uemura T; Higashi K; Takigawa M; Toida T; Kashiwagi K; Igarashi K
    Int J Biochem Cell Biol; 2009 Dec; 41(12):2538-45. PubMed ID: 19695341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biochemistry, genetics, and regulation of polyamine biosynthesis in Saccharomyces cerevisiae.
    Tabor CW; Tabor H; Tyagi AK; Cohn MS
    Fed Proc; 1982 Dec; 41(14):3084-8. PubMed ID: 6754461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyamines inhibit the yeast histone deacetylase.
    Vu QA; Zhang DE; Chroneos ZC; Nelson DA
    FEBS Lett; 1987 Aug; 220(1):79-83. PubMed ID: 3301411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microarray studies on the genes responsive to the addition of spermidine or spermine to a Saccharomyces cerevisiae spermidine synthase mutant.
    Chattopadhyay MK; Chen W; Poy G; Cam M; Stiles D; Tabor H
    Yeast; 2009 Oct; 26(10):531-44. PubMed ID: 19688718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A common mechanism involving the TORC1 pathway can lead to amphotericin B-persistence in biofilm and planktonic Saccharomyces cerevisiae populations.
    Bojsen R; Regenberg B; Gresham D; Folkesson A
    Sci Rep; 2016 Feb; 6():21874. PubMed ID: 26903175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spermidine but not spermine is essential for hypusine biosynthesis and growth in Saccharomyces cerevisiae: spermine is converted to spermidine in vivo by the FMS1-amine oxidase.
    Chattopadhyay MK; Tabor CW; Tabor H
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13869-74. PubMed ID: 14617780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic architecture of Hsp90-dependent drug resistance.
    Cowen LE; Carpenter AE; Matangkasombut O; Fink GR; Lindquist S
    Eukaryot Cell; 2006 Dec; 5(12):2184-8. PubMed ID: 17056742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.