These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 3015352)
41. Postnatal development of alpha-adrenoceptor-mediated autoinhibition in the locus coeruleus. Kimura F; Nakamura S Brain Res; 1987 Sep; 432(1):21-6. PubMed ID: 2820548 [TBL] [Abstract][Full Text] [Related]
42. Regional topography within noradrenergic locus coeruleus as revealed by retrograde transport of horseradish peroxidase. Mason ST; Fibiger HC J Comp Neurol; 1979 Oct; 187(4):703-24. PubMed ID: 90684 [TBL] [Abstract][Full Text] [Related]
43. Paradoxical effect of noradrenaline-mediated neurotransmission in the antinociceptive phenomenon that accompanies tonic-clonic seizures: role of locus coeruleus neurons and α(2)- and β-noradrenergic receptors. Felippotti TT; dos Reis Ferreira CM; de Freitas RL; de Oliveira RC; de Oliveira R; Paschoalin-Maurin T; Coimbra NC Epilepsy Behav; 2011 Oct; 22(2):165-77. PubMed ID: 21813330 [TBL] [Abstract][Full Text] [Related]
44. The biphasic effects of locus coeruleus noradrenergic activation on dendrodendritic inhibition in the rat olfactory bulb. Okutani F; Kaba H; Takahashi S; Seto K Brain Res; 1998 Feb; 783(2):272-9. PubMed ID: 9507162 [TBL] [Abstract][Full Text] [Related]
45. Synaptic substrates for enkephalinergic and serotoninergic interactions with dental primary afferent terminals in trigeminal subnucleus interpolaris: an immunocytochemical study using peroxidase and colloidal gold. Matthews MA; Hernandez TV; Hoffmann KD; Romanska AI; Liles SL Synapse; 1989; 4(3):175-95. PubMed ID: 2609250 [TBL] [Abstract][Full Text] [Related]
46. Noradrenaline inhibits substantia gelatinosa neurons in mice trigeminal subnucleus caudalis via alpha(2) and beta adrenoceptors. Han SK; Park JR; Park SA; Chun SW; Lee JC; Lee SY; Ryu PD; Park SJ Neurosci Lett; 2007 Jan; 411(2):92-7. PubMed ID: 17110030 [TBL] [Abstract][Full Text] [Related]
47. Phasic activation of the locus coeruleus enhances responses of primary sensory cortical neurons to peripheral receptive field stimulation. Waterhouse BD; Moises HC; Woodward DJ Brain Res; 1998 Apr; 790(1-2):33-44. PubMed ID: 9593812 [TBL] [Abstract][Full Text] [Related]
48. Activation of an inhibitory noradrenergic pathway projecting from the locus coeruleus to the cingulate cortex of the rat. Dillier N; Laszlo J; Müller B; Koella WP; Olpe HR Brain Res; 1978 Oct; 154(1):61-8. PubMed ID: 698822 [TBL] [Abstract][Full Text] [Related]
49. Effects of 7-ethoxycarbonyl-6,8-dimethyl-4-hydroxymethyl-1(2H)-phthalazinone (EG626) on the spinal trigeminal nucleus, ventral posteromedial nucleus, and sensory cortex. Azuma H; Takashima Y; Ishikawa M; Sasa M; Fujiwara M Jpn J Pharmacol; 1982 Oct; 32(5):767-74. PubMed ID: 6294392 [TBL] [Abstract][Full Text] [Related]
51. Role of the locus coeruleus in the control of paradoxical sleep generation in the cat. Sakai K; Crochet S Arch Ital Biol; 2004 Jul; 142(4):421-7. PubMed ID: 15493546 [No Abstract] [Full Text] [Related]
52. Mechanism underlying prolonged inhibition of rat locus coeruleus neurons following anti- and orthodromic activation. Watabe K; Satoh T Brain Res; 1979 Apr; 165(2):343-7. PubMed ID: 217495 [No Abstract] [Full Text] [Related]
53. Vagus nerve stimulation enhances perforant path-CA3 synaptic transmission via the activation of β-adrenergic receptors and the locus coeruleus. Shen H; Fuchino Y; Miyamoto D; Nomura H; Matsuki N Int J Neuropsychopharmacol; 2012 May; 15(4):523-30. PubMed ID: 21733240 [TBL] [Abstract][Full Text] [Related]
54. Selective prefrontal cortical projections to the region of the locus coeruleus and raphe nuclei in the rhesus monkey. Arnsten AF; Goldman-Rakic PS Brain Res; 1984 Jul; 306(1-2):9-18. PubMed ID: 6466989 [TBL] [Abstract][Full Text] [Related]
55. Inhibition of dorsal column nuclei by stimulation of trigeminal afferents in decerebrate-decerebellate cats. Saadé NE; Dajani BM; Atweh SF; Jabbur SJ Brain Res; 1985 Dec; 348(2):405-7. PubMed ID: 3000508 [TBL] [Abstract][Full Text] [Related]
56. Projections from the periaqueductal gray to the rostromedial pericoerulear region and nucleus locus coeruleus: anatomic and physiologic studies. Ennis M; Behbehani M; Shipley MT; Van Bockstaele EJ; Aston-Jones G J Comp Neurol; 1991 Apr; 306(3):480-94. PubMed ID: 1713927 [TBL] [Abstract][Full Text] [Related]
57. Effects of long-term desipramine administration on noradrenergic neurotransmission: electrophysiological studies in the rat brain. Lacroix D; Blier P; Curet O; de Montigny C J Pharmacol Exp Ther; 1991 Jun; 257(3):1081-90. PubMed ID: 1646320 [TBL] [Abstract][Full Text] [Related]
58. Adaptive changes of beta-adrenergic receptors after neonatal locus coeruleus lesion: regulation of serotoninergic unit activity. Lanfumey L; Adrien J Synapse; 1988; 2(6):644-9. PubMed ID: 2850635 [TBL] [Abstract][Full Text] [Related]
59. Histamine in the locus coeruleus promotes descending noradrenergic inhibition of neuropathic hypersensitivity. Wei H; Jin CY; Viisanen H; You HJ; Pertovaara A Pharmacol Res; 2014 Dec; 90():58-66. PubMed ID: 25304183 [TBL] [Abstract][Full Text] [Related]
60. [Factors responsible for generation of multiple discharges in motor neurons of the nucleus of the facial nerve in cats]. Fanardzhian VV; Kasabian SA; Manvelian LR Neirofiziologiia; 1981; 13(5):520-30. PubMed ID: 6272138 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]