BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 30154096)

  • 1. The role of mTOR-mediated signals during haemopoiesis and lineage commitment.
    Malik N; Sansom OJ; Michie AM
    Biochem Soc Trans; 2018 Oct; 46(5):1313-1324. PubMed ID: 30154096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mTORC1 activity is essential for erythropoiesis and B cell lineage commitment.
    Malik N; Dunn KM; Cassels J; Hay J; Estell C; Sansom OJ; Michie AM
    Sci Rep; 2019 Nov; 9(1):16917. PubMed ID: 31729420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of B lymphocyte development and functions by the mTOR signaling pathways.
    Iwata TN; Ramírez-Komo JA; Park H; Iritani BM
    Cytokine Growth Factor Rev; 2017 Jun; 35():47-62. PubMed ID: 28583723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoinositide 3-kinase signalling regulates early development and developmental haemopoiesis.
    Bone HK; Welham MJ
    J Cell Sci; 2007 May; 120(Pt 10):1752-62. PubMed ID: 17456549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining the role of mTOR pathway in the regulation of stem cells of glioblastoma.
    Jhanwar-Uniyal M; Gellerson O; Bree J; Das M; Kleinman G; Gandhi CD
    Adv Biol Regul; 2023 May; 88():100946. PubMed ID: 36658088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic modelling of the PI3K/MTOR signalling network uncovers biphasic dependence of mTORC1 activity on the mTORC2 subunit SIN1.
    Ghomlaghi M; Yang G; Shin SY; James DE; Nguyen LK
    PLoS Comput Biol; 2021 Sep; 17(9):e1008513. PubMed ID: 34529665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S6K1 regulates hematopoietic stem cell self-renewal and leukemia maintenance.
    Ghosh J; Kobayashi M; Ramdas B; Chatterjee A; Ma P; Mali RS; Carlesso N; Liu Y; Plas DR; Chan RJ; Kapur R
    J Clin Invest; 2016 Jul; 126(7):2621-5. PubMed ID: 27294524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and pharmacologic evidence that mTOR targeting outweighs mTORC1 inhibition as an antimyeloma strategy.
    Chen X; Díaz-Rodríguez E; Ocio EM; Paiva B; Mortensen DS; Lopez-Girona A; Chopra R; Miguel JS; Pandiella A
    Mol Cancer Ther; 2014 Feb; 13(2):504-16. PubMed ID: 24431075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The complex network of mTOR signalling in the heart.
    Sciarretta S; Forte M; Frati G; Sadoshima J
    Cardiovasc Res; 2022 Jan; 118(2):424-439. PubMed ID: 33512477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship.
    Jhanwar-Uniyal M; Wainwright JV; Mohan AL; Tobias ME; Murali R; Gandhi CD; Schmidt MH
    Adv Biol Regul; 2019 May; 72():51-62. PubMed ID: 31010692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling.
    Yoon MS
    Nutrients; 2017 Oct; 9(11):. PubMed ID: 29077002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic modeling of signal transduction by mTOR complexes in cancer.
    Dorvash M; Farahmandnia M; Mosaddeghi P; Farahmandnejad M; Saber H; Khorraminejad-Shirazi M; Azadi A; Tavassoly I
    J Theor Biol; 2019 Dec; 483():109992. PubMed ID: 31493485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predominance of mTORC1 over mTORC2 in the regulation of proliferation of ovarian cancer cells: therapeutic implications.
    Montero JC; Chen X; Ocaña A; Pandiella A
    Mol Cancer Ther; 2012 Jun; 11(6):1342-52. PubMed ID: 22496482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma.
    Jhanwar-Uniyal M; Dominguez JF; Mohan AL; Tobias ME; Gandhi CD
    Adv Biol Regul; 2022 Jan; 83():100854. PubMed ID: 34996736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2.
    Feldman ME; Apsel B; Uotila A; Loewith R; Knight ZA; Ruggero D; Shokat KM
    PLoS Biol; 2009 Feb; 7(2):e38. PubMed ID: 19209957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein kinase N controls a lysosomal lipid switch to facilitate nutrient signalling via mTORC1.
    Wallroth A; Koch PA; Marat AL; Krause E; Haucke V
    Nat Cell Biol; 2019 Sep; 21(9):1093-1101. PubMed ID: 31451768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling.
    Wang B; Jie Z; Joo D; Ordureau A; Liu P; Gan W; Guo J; Zhang J; North BJ; Dai X; Cheng X; Bian X; Zhang L; Harper JW; Sun SC; Wei W
    Nature; 2017 May; 545(7654):365-369. PubMed ID: 28489822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis.
    Kalaitzidis D; Sykes SM; Wang Z; Punt N; Tang Y; Ragu C; Sinha AU; Lane SW; Souza AL; Clish CB; Anastasiou D; Gilliland DG; Scadden DT; Guertin DA; Armstrong SA
    Cell Stem Cell; 2012 Sep; 11(3):429-39. PubMed ID: 22958934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growing knowledge of the mTOR signaling network.
    Huang K; Fingar DC
    Semin Cell Dev Biol; 2014 Dec; 36():79-90. PubMed ID: 25242279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epstein-Barr Virus LMP1-Activated mTORC1 and mTORC2 Coordinately Promote Nasopharyngeal Cancer Stem Cell Properties.
    Zhu N; Wang Q; Wu Z; Wang Y; Zeng MS; Yuan Y
    J Virol; 2022 Mar; 96(5):e0194121. PubMed ID: 35019715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.