These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30154332)

  • 1. Impact of Spaceflight and Artificial Gravity on the Mouse Retina: Biochemical and Proteomic Analysis.
    Mao XW; Byrum S; Nishiyama NC; Pecaut MJ; Sridharan V; Boerma M; Tackett AJ; Shiba D; Shirakawa M; Takahashi S; Delp MD
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30154332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of mouse ocular response to a 35-day spaceflight mission: Evidence of blood-retinal barrier disruption and ocular adaptations.
    Mao XW; Nishiyama NC; Byrum SD; Stanbouly S; Jones T; Drew A; Sridharan V; Boerma M; Tackett AJ; Zawieja D; Willey JS; Delp M; Pecaut MJ
    Sci Rep; 2019 Jun; 9(1):8215. PubMed ID: 31160660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spaceflight induces oxidative damage to blood-brain barrier integrity in a mouse model.
    Mao XW; Nishiyama NC; Byrum SD; Stanbouly S; Jones T; Holley J; Sridharan V; Boerma M; Tackett AJ; Willey JS; Pecaut MJ; Delp MD
    FASEB J; 2020 Nov; 34(11):15516-15530. PubMed ID: 32981077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spaceflight influences gene expression, photoreceptor integrity, and oxidative stress-related damage in the murine retina.
    Overbey EG; da Silveira WA; Stanbouly S; Nishiyama NC; Roque-Torres GD; Pecaut MJ; Zawieja DC; Wang C; Willey JS; Delp MD; Hardiman G; Mao XW
    Sci Rep; 2019 Sep; 9(1):13304. PubMed ID: 31527661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spaceflight environment induces mitochondrial oxidative damage in ocular tissue.
    Mao XW; Pecaut MJ; Stodieck LS; Ferguson VL; Bateman TA; Bouxsein M; Jones TA; Moldovan M; Cunningham CE; Chieu J; Gridley DS
    Radiat Res; 2013 Oct; 180(4):340-50. PubMed ID: 24033191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies.
    Shimbo M; Kudo T; Hamada M; Jeon H; Imamura Y; Asano K; Okada R; Tsunakawa Y; Mizuno S; Yagami K; Ishikawa C; Li H; Shiga T; Ishida J; Hamada J; Murata K; Ishimaru T; Hashimoto M; Fukamizu A; Yamane M; Ikawa M; Morita H; Shinohara M; Asahara H; Akiyama T; Akiyama N; Sasanuma H; Yoshida N; Zhou R; Wang YY; Ito T; Kokubu Y; Noguchi TA; Ishimine H; Kurisaki A; Shiba D; Mizuno H; Shirakawa M; Ito N; Takeda S; Takahashi S
    Exp Anim; 2016 May; 65(2):175-87. PubMed ID: 26822934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of spaceflight and artificial gravity on sulfur metabolism in mouse liver: sulfur metabolomic and transcriptomic analysis.
    Kurosawa R; Sugimoto R; Imai H; Atsuji K; Yamada K; Kawano Y; Ohtsu I; Suzuki K
    Sci Rep; 2021 Nov; 11(1):21786. PubMed ID: 34750416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic Analysis of Mouse Brain Subjected to Spaceflight.
    Mao XW; Sandberg LB; Gridley DS; Herrmann EC; Zhang G; Raghavan R; Zubarev RA; Zhang B; Stodieck LS; Ferguson VL; Bateman TA; Pecaut MJ
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30577490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial gravity partially protects space-induced neurological deficits in Drosophila melanogaster.
    Mhatre SD; Iyer J; Petereit J; Dolling-Boreham RM; Tyryshkina A; Paul AM; Gilbert R; Jensen M; Woolsey RJ; Anand S; Sowa MB; Quilici DR; Costes SV; Girirajan S; Bhattacharya S
    Cell Rep; 2022 Sep; 40(10):111279. PubMed ID: 36070701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of space flight on the behavior of human retinal pigment epithelial ARPE-19 cells and evaluation of coenzyme Q10 treatment.
    Cialdai F; Bolognini D; Vignali L; Iannotti N; Cacchione S; Magi A; Balsamo M; Vukich M; Neri G; Donati A; Monici M; Capaccioli S; Lulli M
    Cell Mol Life Sci; 2021 Dec; 78(23):7795-7812. PubMed ID: 34714361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of new experimental platform 'MARS'-Multiple Artificial-gravity Research System-to elucidate the impacts of micro/partial gravity on mice.
    Shiba D; Mizuno H; Yumoto A; Shimomura M; Kobayashi H; Morita H; Shimbo M; Hamada M; Kudo T; Shinohara M; Asahara H; Shirakawa M; Takahashi S
    Sci Rep; 2017 Sep; 7(1):10837. PubMed ID: 28883615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of Spaceflight-Induced Adverse Effects on Photoreceptors and Retinal Function in the Mouse Eye.
    Mao X; Stanbouly S; Holley J; Pecaut M; Crapo J
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forces associated with launch into space do not impact bone fracture healing.
    Childress P; Brinker A; Gong CS; Harris J; Olivos DJ; Rytlewski JD; Scofield DC; Choi SY; Shirazi-Fard Y; McKinley TO; Chu TG; Conley CL; Chakraborty N; Hammamieh R; Kacena MA
    Life Sci Space Res (Amst); 2018 Feb; 16():52-62. PubMed ID: 29475520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of Global Ocular Structure Following Spaceflight Using a Micro-Computed Tomography (Micro-CT) Imaging Method.
    Roque-Torres GD; Nishiyama NC; Stanbouly S; Mao XW
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33191924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of gravity-responsive serum proteins in spaceflight mice using a quantitative proteomic approach with data-independent acquisition mass spectrometry.
    Kimura Y; Nakai Y; Ino Y; Akiyama T; Moriyama K; Ohira T; Saito T; Inaba Y; Kumagai K; Ryo A; Hirano H
    Proteomics; 2024 May; 24(9):e2300214. PubMed ID: 38475964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of gravity-responsive proteins in the femur of spaceflight mice using a quantitative proteomic approach.
    Egashira K; Ino Y; Nakai Y; Ohira T; Akiyama T; Moriyama K; Yamamoto Y; Kimura M; Ryo A; Saito T; Inaba Y; Hirano H; Kumagai K; Kimura Y
    J Proteomics; 2023 Sep; 288():104976. PubMed ID: 37482271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary intervention of mice using an improved Multiple Artificial-gravity Research System (MARS) under artificial 1 
    Matsuda C; Kato T; Inoue-Suzuki S; Kikuchi J; Ohta T; Kagawa M; Hattori M; Kobayashi H; Shiba D; Shirakawa M; Mizuno H; Furukawa S; Mukai C; Ohno H
    NPJ Microgravity; 2019; 5():16. PubMed ID: 31312718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association of Long-Duration Spaceflight With Anterior and Posterior Ocular Structure Changes in Astronauts and Their Recovery.
    Macias BR; Patel NB; Gibson CR; Samuels BC; Laurie SS; Otto C; Ferguson CR; Lee SMC; Ploutz-Snyder R; Kramer LA; Mader TH; Brunstetter T; Stenger MB
    JAMA Ophthalmol; 2020 May; 138(5):553-559. PubMed ID: 32239198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spaceflight induces novel regulatory responses in Arabidopsis seedling as revealed by combined proteomic and transcriptomic analyses.
    Kruse CPS; Meyers AD; Basu P; Hutchinson S; Luesse DR; Wyatt SE
    BMC Plant Biol; 2020 May; 20(1):237. PubMed ID: 32460700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone turnover in wild type and pleiotrophin-transgenic mice housed for three months in the International Space Station (ISS).
    Tavella S; Ruggiu A; Giuliani A; Brun F; Canciani B; Manescu A; Marozzi K; Cilli M; Costa D; Liu Y; Piccardi F; Tasso R; Tromba G; Rustichelli F; Cancedda R
    PLoS One; 2012; 7(3):e33179. PubMed ID: 22438896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.