BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30154510)

  • 1. Biophysical and structural characterization of the thermostable WD40 domain of a prokaryotic protein, Thermomonospora curvata PkwA.
    Shen C; Du Y; Qiao F; Kong T; Yuan L; Zhang D; Wu X; Li D; Wu YD
    Sci Rep; 2018 Aug; 8(1):12965. PubMed ID: 30154510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prokaryotic and Highly-Repetitive WD40 Proteins: A Systematic Study.
    Hu XJ; Li T; Wang Y; Xiong Y; Wu XH; Zhang DL; Ye ZQ; Wu YD
    Sci Rep; 2017 Sep; 7(1):10585. PubMed ID: 28878378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The WD-40 repeat protein PkwA of Thermomonospora curvata is associated with rapid growth and is localized in the tips of growing hyphae.
    Petrícková K; Hasek J; Benada O; Petrícek M
    FEMS Microbiol Lett; 2006 May; 258(2):187-93. PubMed ID: 16640571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PkwA, a WD-repeat protein, is expressed in spore-derived mycelium of Thermomonospora curvata and phosphorylation of its WD domain could act as a molecular switch.
    Joshi B; Janda L; Stoytcheva Z; Tichy P
    Microbiology (Reading); 2000 Dec; 146 Pt 12():3259-3267. PubMed ID: 11101684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WDSPdb: a database for WD40-repeat proteins.
    Wang Y; Hu XJ; Zou XD; Wu XH; Ye ZQ; Wu YD
    Nucleic Acids Res; 2015 Jan; 43(Database issue):D339-44. PubMed ID: 25348404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deduced Thermomonospora curvata protein containing serine/threonine protein kinase and WD-repeat domains.
    Janda L; Tichý P; Spízek J; Petrícek M
    J Bacteriol; 1996 Mar; 178(5):1487-9. PubMed ID: 8631732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for WD40 repeat detection and secondary structure prediction.
    Wang Y; Jiang F; Zhuo Z; Wu XH; Wu YD
    PLoS One; 2013; 8(6):e65705. PubMed ID: 23776530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural diversity of oligomeric β-propellers with different numbers of identical blades.
    Afanasieva E; Chaudhuri I; Martin J; Hertle E; Ursinus A; Alva V; Hartmann MD; Lupas AN
    Elife; 2019 Oct; 8():. PubMed ID: 31613220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WDSPdb: an updated resource for WD40 proteins.
    Ma J; An K; Zhou JB; Wu NS; Wang Y; Ye ZQ; Wu YD
    Bioinformatics; 2019 Nov; 35(22):4824-4826. PubMed ID: 31161214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WD40 Repeat Proteins: Signalling Scaffold with Diverse Functions.
    Jain BP; Pandey S
    Protein J; 2018 Oct; 37(5):391-406. PubMed ID: 30069656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of Asp-His-Ser/Thr-Trp tetrad on the thermostability of WD40-repeat proteins.
    Wu XH; Chen RC; Gao Y; Wu YD
    Biochemistry; 2010 Nov; 49(47):10237-45. PubMed ID: 20939513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of WD40 repeats by secondary structure-aided profile-profile alignment.
    Wang C; Dong X; Han L; Su XD; Zhang Z; Li J; Song J
    J Theor Biol; 2016 Jun; 398():122-9. PubMed ID: 27021623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation of Conserved Residues Increases in Vitro Activity of the Formylglycine-Generating Enzyme.
    Knop M; Lemnaru R; Seebeck FP
    Chembiochem; 2017 Sep; 18(17):1755-1761. PubMed ID: 28605111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is Asp-His-Ser/Thr-Trp tetrad hydrogen-bond network important to WD40-repeat proteins: a statistical and theoretical study.
    Wu XH; Zhang H; Wu YD
    Proteins; 2010 Apr; 78(5):1186-94. PubMed ID: 19927323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkaline pH-dependent differential unfolding characteristics of mesophilic and thermophilic homologs of dimeric serine hydroxymethyltransferase.
    Bhatt AN; Bhakuni V; Kumar A; Khan MY; Siddiqi MI
    Biochim Biophys Acta; 2010 Jun; 1804(6):1294-300. PubMed ID: 20152942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of WD40 domain proteins.
    Xu C; Min J
    Protein Cell; 2011 Mar; 2(3):202-14. PubMed ID: 21468892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the WD40 domain of human PRPF19.
    Zhang Y; Li Y; Liang X; Zhu Z; Sun H; He H; Min J; Liao S; Liu Y
    Biochem Biophys Res Commun; 2017 Nov; 493(3):1250-1253. PubMed ID: 28962858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability.
    Anantharaman V; Aravind L
    BMC Genomics; 2004 Jul; 5(1):45. PubMed ID: 15257761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Basis for Substrate Selectivity of the E3 Ligase COP1.
    Uljon S; Xu X; Durzynska I; Stein S; Adelmant G; Marto JA; Pear WS; Blacklow SC
    Structure; 2016 May; 24(5):687-696. PubMed ID: 27041596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of LRRK2 accessory repeat domains: prediction of repeat length, number and sites of Parkinson's disease mutations.
    Mills RD; Mulhern TD; Cheng HC; Culvenor JG
    Biochem Soc Trans; 2012 Oct; 40(5):1086-9. PubMed ID: 22988870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.