These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 3015494)

  • 1. The protective effect of glucose on soluble rat lens hexokinase in the presence of oxidative stress.
    Kletzky DL; Tung WH; Chylack LT
    Curr Eye Res; 1986 Jun; 5(6):433-9. PubMed ID: 3015494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lens hexokinase deactivation by near-UV irradiation.
    Tung WH; Chylack LT; Andley UP
    Curr Eye Res; 1988 Mar; 7(3):257-63. PubMed ID: 3359812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superoxide dismutase of the eye: relative functions of superoxide dismutase and catalase in protecting the ocular lens from oxidative damage.
    Bhuyan KC; Bhuyan DK
    Biochim Biophys Acta; 1978 Aug; 542(1):28-38. PubMed ID: 208649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation in cellular glutathione peroxidase activity in lens epithelial cells, transgenics and knockouts does not significantly change the response to H2O2 stress.
    Spector A; Yang Y; Ho YS; Magnenat JL; Wang RR; Ma W; Li WC
    Exp Eye Res; 1996 May; 62(5):521-40. PubMed ID: 8759521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of "hypoglycemic" cataract formation in the rat lens. II. Further studies on the role of hexokinase instability.
    Chylack LT; Schaefer FL
    Invest Ophthalmol; 1976 Jul; 15(7):519-28. PubMed ID: 931698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An SOD-mimicry mechanism underlies the role of nitroxides in protecting papain from oxidative inactivation.
    Offer T; Mohsen M; Samuni A
    Free Radic Biol Med; 1998 Nov; 25(7):832-8. PubMed ID: 9823549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thioltransferase is present in the lens epithelial cells as a highly oxidative stress-resistant enzyme.
    Wang GM; Wu F; Raghavachari N; Reddan JR
    Exp Eye Res; 1998 Apr; 66(4):477-85. PubMed ID: 9593640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of the lens to oxidative-osmotic stress.
    Cheng HM; Fagerholm P; Chylack LT
    Exp Eye Res; 1983 Jul; 37(1):11-21. PubMed ID: 6873202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The lens's response to exogenous hydrogen peroxide.
    Cheng HM
    Metab Pediatr Syst Ophthalmol (1985); 1988; 11(4):152-5. PubMed ID: 3221797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age and the control of glycolysis in the rat lens.
    Gillis MK; Chylack LT; Cheng HM
    Invest Ophthalmol Vis Sci; 1981 Apr; 20(4):457-66. PubMed ID: 6452426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lens glutathione depletion of 1-chloro-2,4-dinitrobenzene and oxidative stress.
    Srivastava SK; Ansari NH; Awasthi YC
    Curr Eye Res; 1984 Jan; 3(1):117-9. PubMed ID: 6317284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the activity of glutathione reductase on the response of cultured lens epithelial cells from young and old rabbits to hydrogen peroxide.
    Reddan JR; Giblin FJ; Dziedzic DC; McCready JP; Schrimscher L; Reddy VN
    Exp Eye Res; 1988 Feb; 46(2):209-21. PubMed ID: 3350066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of "hypoglycemic" cataract formation in the rat lens. I. The role of hexokinase instability.
    Chylack LT
    Invest Ophthalmol; 1975 Oct; 14(10):746-55. PubMed ID: 1184308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid peroxide and reactive oxygen species generating systems of the crystalline lens.
    Babizhayev MA; Costa EB
    Biochim Biophys Acta; 1994 Feb; 1225(3):326-37. PubMed ID: 8312381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhesus monkey lens as an in vitro model for studying oxidative stress.
    Zigler JS; Lucas VA; Du XY
    Invest Ophthalmol Vis Sci; 1989 Oct; 30(10):2195-9. PubMed ID: 2793360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose metabolism in the mucosa of the small intestine. The effect of glucose on hexokinase activity.
    Shakespeare P; Srivastava LM; Hübscher G
    Biochem J; 1969 Jan; 111(1):63-7. PubMed ID: 5773750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling cortical cataractogenesis 22: is in vitro reduction of damage in model diabetic rat cataract by taurine due to its antioxidant activity?
    Kilic F; Bhardwaj R; Caulfeild J; Trevithick JR
    Exp Eye Res; 1999 Sep; 69(3):291-300. PubMed ID: 10471337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of catalase and hydroxyl radicals in the oxidation of methanol by rat liver microsomes.
    Cederbaum AI; Qureshi A
    Biochem Pharmacol; 1982 Feb; 31(3):329-35. PubMed ID: 6280725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epithelial activity of hexokinase and glucose-6-phosphate dehydrogenase in cultured bovine lenses recovering from pharmaceutical-induced optical damage.
    Hartwick AT; Sivak JG
    Mol Vis; 2003 Nov; 9():594-600. PubMed ID: 14627957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The characterization of the hexokinases in several tissues of the calf eye.
    Chylack LT
    Invest Ophthalmol; 1975 Nov; 14(11):854-62. PubMed ID: 1184318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.