These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 30155004)
1. Isolation of a structural intermediate during switching of degree of interpenetration in a metal-organic framework. Aggarwal H; Das RK; Bhatt PM; Barbour LJ Chem Sci; 2015 Aug; 6(8):4986-4992. PubMed ID: 30155004 [TBL] [Abstract][Full Text] [Related]
2. Direct evidence for single-crystal to single-crystal switching of degree of interpenetration in a metal-organic framework. Aggarwal H; Bhatt PM; Bezuidenhout CX; Barbour LJ J Am Chem Soc; 2014 Mar; 136(10):3776-9. PubMed ID: 24555817 [TBL] [Abstract][Full Text] [Related]
3. Control of interpenetration and gas-sorption properties of metal-organic frameworks by a simple change in ligand design. Prasad TK; Suh MP Chemistry; 2012 Jul; 18(28):8673-80. PubMed ID: 22678955 [TBL] [Abstract][Full Text] [Related]
4. Transformation from non- to double-interpenetration in robust Cd(II) doubly-pillared-layered metal-organic frameworks. Aggarwal H; Lama P; Barbour LJ Chem Commun (Camb); 2014 Dec; 50(93):14543-6. PubMed ID: 25306976 [TBL] [Abstract][Full Text] [Related]
5. Rational Design and Synthesis of a Highly Porous Copper-Based Interpenetrated Metal-Organic Framework for High CO Bose P; Bai L; Ganguly R; Zou R; Zhao Y Chempluschem; 2015 Aug; 80(8):1259-1266. PubMed ID: 31973289 [TBL] [Abstract][Full Text] [Related]
6. Impact of the Structural Modification of Diamondoid Cd(II) MOFs on the Nonlinear Optical Properties. Gupta M; Zhu Z; Kottilil D; Rath BB; Tian W; Tan ZK; Liu X; Xu QH; Ji W; Vittal JJ ACS Appl Mater Interfaces; 2021 Dec; 13(50):60163-60172. PubMed ID: 34874696 [TBL] [Abstract][Full Text] [Related]
7. Control of interpenetration in a microporous metal-organic framework for significantly enhanced C2H2/CO2 separation at room temperature. Chang G; Li B; Wang H; Hu T; Bao Z; Chen B Chem Commun (Camb); 2016 Feb; 52(17):3494-6. PubMed ID: 26837226 [TBL] [Abstract][Full Text] [Related]
8. Giant Enhancement of Second Harmonic Generation Accompanied by the Structural Transformation of 7-Fold to 8-Fold Interpenetrated Metal-Organic Frameworks (MOFs). Chen Z; Gallo G; Sawant VA; Zhang T; Zhu M; Liang L; Chanthapally A; Bolla G; Quah HS; Liu X; Loh KP; Dinnebier RE; Xu QH; Vittal JJ Angew Chem Int Ed Engl; 2020 Jan; 59(2):833-838. PubMed ID: 31573739 [TBL] [Abstract][Full Text] [Related]
9. Interpenetrated Metal-Organic Frameworks with Duan Z; Li Y; Xiao X; Huang X; Li X; Li Y; Zhang C; Zhang H; Li L; Lin Z; Zhao Y; Huang W ACS Appl Mater Interfaces; 2020 Apr; 12(16):18715-18722. PubMed ID: 32233389 [TBL] [Abstract][Full Text] [Related]
10. Controlled partial interpenetration in metal-organic frameworks. Ferguson A; Liu L; Tapperwijn SJ; Perl D; Coudert FX; Van Cleuvenbergen S; Verbiest T; van der Veen MA; Telfer SG Nat Chem; 2016 Mar; 8(3):250-7. PubMed ID: 26892557 [TBL] [Abstract][Full Text] [Related]
11. Interpenetration as a mechanism for negative thermal expansion in the metal-organic framework Cu3(btb)2 (MOF-14). Wu Y; Peterson VK; Luks E; Darwish TA; Kepert CJ Angew Chem Int Ed Engl; 2014 May; 53(20):5175-8. PubMed ID: 24692065 [TBL] [Abstract][Full Text] [Related]
12. Partial-Interpenetration-Controlled UiO-Type Metal-Organic Framework and its Catalytic Activity. Kim Y; Lee S; Chen YP; Lee B; Lee S; Park J Small; 2024 Mar; 20(9):e2305999. PubMed ID: 37840400 [TBL] [Abstract][Full Text] [Related]
13. Construction of Interpenetrated Ruthenium Metal-Organic Frameworks as Stable Photocatalysts for CO2 Reduction. Zhang S; Li L; Zhao S; Sun Z; Luo J Inorg Chem; 2015 Sep; 54(17):8375-9. PubMed ID: 26347291 [TBL] [Abstract][Full Text] [Related]
14. Solvent-Driven Dynamics: Crafting Tailored Transformations of Cu(II)-Based MOFs. Heo CY; Díaz-Ramírez ML; Park SH; Kang M; Hong CS; Jeong NC ACS Appl Mater Interfaces; 2024 Feb; 16(7):9068-9077. PubMed ID: 38345827 [TBL] [Abstract][Full Text] [Related]
15. Frontispiece: Rational Design and Synthesis of a Highly Porous Copper-Based Interpenetrated Metal-Organic Framework for High CO Bose P; Bai L; Ganguly R; Zou R; Zhao Y Chempluschem; 2015 Aug; 80(8):. PubMed ID: 31973306 [TBL] [Abstract][Full Text] [Related]
16. Ligated Solvent Influence on Interpenetration and Carbon Dioxide and Water Sorption Hysteresis in a System of 2D Isoreticular MOFs. Chatterjee N; Oliver CL Inorg Chem; 2022 Feb; 61(8):3516-3526. PubMed ID: 35175770 [TBL] [Abstract][Full Text] [Related]
17. Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy. Shekhah O; Wang H; Paradinas M; Ocal C; Schüpbach B; Terfort A; Zacher D; Fischer RA; Wöll C Nat Mater; 2009 Jun; 8(6):481-4. PubMed ID: 19404238 [TBL] [Abstract][Full Text] [Related]
18. Doubly Interpenetrated Metal-Organic Framework of pcu Topology for Selective Separation of Propylene from Propane. Liu T; Cui H; Zhang X; Zhang ZY; Lin RB; Liang B; Zhang J; Li D; Chen B ACS Appl Mater Interfaces; 2020 Oct; 12(43):48712-48717. PubMed ID: 33113637 [TBL] [Abstract][Full Text] [Related]
19. Non-Interpenetrated Metal-Organic Frameworks Based on Copper(II) Paddlewheel and Oligoparaxylene-Isophthalate Linkers: Synthesis, Structure, and Gas Adsorption. Yan Y; Juríček M; Coudert FX; Vermeulen NA; Grunder S; Dailly A; Lewis W; Blake AJ; Stoddart JF; Schröder M J Am Chem Soc; 2016 Mar; 138(10):3371-81. PubMed ID: 26928460 [TBL] [Abstract][Full Text] [Related]
20. Channel partition into nanoscale polyhedral cages of a triple-self-interpenetrated metal-organic framework with high CO2 uptake. Chen SQ; Zhai QG; Li SN; Jiang YC; Hu MC Inorg Chem; 2015 Jan; 54(1):10-2. PubMed ID: 25494676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]