These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 3015505)
1. Localization and characterization of recombinant DNA clones derived from the highly repetitive DNA sequences in the Indian muntjac cells: their presence in the Chinese muntjac. Yu LC; Lowensteiner D; Wong EF; Sawada I; Mazrimas J; Schmid C Chromosoma; 1986; 93(6):521-8. PubMed ID: 3015505 [TBL] [Abstract][Full Text] [Related]
2. A tandemly repetitive, centromeric DNA sequence from the Canadian woodland caribou (Rangifer tarandus caribou): its conservation and evolution in several deer species. Lee C; Ritchie DB; Lin CC Chromosome Res; 1994 Jul; 2(4):293-306. PubMed ID: 7921645 [TBL] [Abstract][Full Text] [Related]
3. New evidence for tandem chromosome fusions in the karyotypic evolution of Asian muntjacs. Lin CC; Sasi R; Fan YS; Chen ZQ Chromosoma; 1991 Oct; 101(1):19-24. PubMed ID: 1769270 [TBL] [Abstract][Full Text] [Related]
4. Karyotypic evolution of a novel cervid satellite DNA family isolated by microdissection from the Indian muntjac Y-chromosome. Li YC; Cheng YM; Hsieh LJ; Ryder OA; Yang F; Liao SJ; Hsiao KM; Tsai FJ; Tsai CH; Lin CC Chromosoma; 2005 May; 114(1):28-38. PubMed ID: 15827746 [TBL] [Abstract][Full Text] [Related]
5. Zoo-fluorescence in situ hybridization analysis of human and Indian muntjac karyotypes (Muntiacus muntjak vaginalis) reveals satellite DNA clusters at the margins of conserved syntenic segments. Frönicke L; Scherthan H Chromosome Res; 1997 Jun; 5(4):254-61. PubMed ID: 9244453 [TBL] [Abstract][Full Text] [Related]
6. Interstitial colocalization of two cervid satellite DNAs involved in the genesis of the Indian muntjac karyotype. Li YC; Lee C; Sanoudou D; Hseu TH; Li SY; Lin CC Chromosome Res; 2000; 8(5):363-73. PubMed ID: 10997777 [TBL] [Abstract][Full Text] [Related]
7. Cloning, characterization and physical mapping of three cervid satellite DNA families in the genome of the Formosan muntjac (Muntiacus reevesi micrurus). Lin CC; Chiang PY; Hsieh LJ; Liao SJ; Chao MC; Li YC Cytogenet Genome Res; 2004; 105(1):100-6. PubMed ID: 15218264 [TBL] [Abstract][Full Text] [Related]
8. Characterisation of a tandem repetitive sequence cloned from the deer Capreolus capreolus and its chromosomal localisation in two muntjac species. Scherthan H Hereditas; 1991; 115(1):43-9. PubMed ID: 1774183 [TBL] [Abstract][Full Text] [Related]
9. Localization of the repetitive telomeric sequence (TTAGGG)n in two muntjac species and implications for their karyotypic evolution. Scherthan H Cytogenet Cell Genet; 1990; 53(2-3):115-7. PubMed ID: 2369836 [TBL] [Abstract][Full Text] [Related]
10. Repetitive sequence families in Alces alces americana. Blake RD; Wang JZ; Beauregard L J Mol Evol; 1997 May; 44(5):509-20. PubMed ID: 9115175 [TBL] [Abstract][Full Text] [Related]
11. Localization of cloned, repetitive DNA sequences in deer species and its implications for maintenance of gene territory. Scherthan H; Arnason U; Lima-de-Faria A Hereditas; 1990; 112(1):13-20. PubMed ID: 2361878 [TBL] [Abstract][Full Text] [Related]
12. Interstitial localization of telomeric DNA sequences in the Indian muntjac chromosomes: further evidence for tandem chromosome fusions in the karyotypic evolution of the Asian muntjacs. Lee C; Sasi R; Lin CC Cytogenet Cell Genet; 1993; 63(3):156-9. PubMed ID: 8485991 [TBL] [Abstract][Full Text] [Related]
13. Comparative sequence analyses reveal sites of ancestral chromosomal fusions in the Indian muntjac genome. Tsipouri V; Schueler MG; Hu S; ; Dutra A; Pak E; Riethman H; Green ED Genome Biol; 2008 Oct; 9(10):R155. PubMed ID: 18957082 [TBL] [Abstract][Full Text] [Related]
14. Longitudinal differentiation of metaphase chromosomes of Indian muntjac as studied by restriction enzyme digestion, in situ hybridization with cloned DNA probes and distamycin A plus DAPI fluorescence staining. Ueda T; Irie S; Kato Y Chromosoma; 1987; 95(4):251-7. PubMed ID: 3040343 [TBL] [Abstract][Full Text] [Related]
15. Identification of an Indian muntjac DNA fragment preferentially hybridizing to the X-chromosome. Vasilikaki-Baker H; Nishioka Y Exp Cell Res; 1984 May; 152(1):275-9. PubMed ID: 6325221 [TBL] [Abstract][Full Text] [Related]
16. Chromosome rearrangement between the Indian muntjac and Chinese muntjac is accompanied by a delection of middle repetitive DNA. Johnston FP; Church RB; Lin CC Can J Biochem; 1982 May; 60(5):497-506. PubMed ID: 7104826 [TBL] [Abstract][Full Text] [Related]
17. New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis). Chi J; Fu B; Nie W; Wang J; Graphodatsky AS; Yang F Cytogenet Genome Res; 2005; 108(4):310-6. PubMed ID: 15627750 [TBL] [Abstract][Full Text] [Related]
18. A reappraisal of the tandem fusion theory of karyotype evolution in Indian muntjac using chromosome painting. Yang F; O'Brien PC; Wienberg J; Ferguson-Smith MA Chromosome Res; 1997 Apr; 5(2):109-17. PubMed ID: 9146914 [TBL] [Abstract][Full Text] [Related]
19. Characterization of ancestral chromosome fusion points in the Indian muntjac deer. Hartmann N; Scherthan H Chromosoma; 2004 Feb; 112(5):213-20. PubMed ID: 14648169 [TBL] [Abstract][Full Text] [Related]
20. Segmental homology among cattle (Bos taurus), Indian muntjac (Muntiacus muntjak vaginalis), and Chinese muntjac (M. reevesi) karyotypes. Frönicke L; Chowdhary BP; Scherthan H Cytogenet Cell Genet; 1997; 77(3-4):223-7. PubMed ID: 9284921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]