BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30155064)

  • 1. Gold nanorods with conjugated polymer ligands: sintering-free conductive inks for printed electronics.
    Reiser B; González-García L; Kanelidis I; Maurer JHM; Kraus T
    Chem Sci; 2016 Jul; 7(7):4190-4196. PubMed ID: 30155064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Origin of Electrical Conductivity in Gold-Polythiophene Hybrid Particle Films.
    Backes IK; González-Garcı A L; Holtsch A; Müller F; Jacobs K; Kraus T
    J Phys Chem Lett; 2020 Dec; 11(24):10538-10547. PubMed ID: 33290078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Scale Synthesis of Hybrid Conductive Polymer-Gold Nanoparticles Using "Sacrificial" Weakly Binding Ligands for Printing Electronics.
    Escudero A; González-García L; Strahl R; Kang DJ; Drzic J; Kraus T
    Inorg Chem; 2021 Nov; 60(22):17103-17113. PubMed ID: 34735769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface and Interface Designs in Copper-Based Conductive Inks for Printed/Flexible Electronics.
    Tomotoshi D; Kawasaki H
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32867267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drying of electrically conductive hybrid polymer-gold nanorods studied with in situ microbeam GISAXS.
    Zhang P; Reiser B; González-García L; Beck S; Drzic J; Kraus T
    Nanoscale; 2019 Apr; 11(14):6538-6543. PubMed ID: 30907898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multijet Gold Nanoparticle Inks for Additive Manufacturing of Printed and Wearable Electronics.
    Valayil Varghese T; Eixenberger J; Rajabi-Kouchi F; Lazouskaya M; Francis C; Burgoyne H; Wada K; Subbaraman H; Estrada D
    ACS Mater Au; 2024 Jan; 4(1):65-73. PubMed ID: 38221917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface Modified Flexible Printed Conductive Films via Ag
    Meng Y; Ma T; Pavinatto FJ; MacKenzie JD
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9190-9196. PubMed ID: 30742404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic Curing of Low-Cost Aqueous Silver Flake Inks for Printed Conductors with Increased Yield.
    Cronin HM; Stoeva Z; Brown M; Shkunov M; Silva SRP
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21398-21410. PubMed ID: 29863321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrohydrodynamic Printing of Microscale PEDOT:PSS-PEO Features with Tunable Conductive/Thermal Properties.
    Chang J; He J; Lei Q; Li D
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19116-19122. PubMed ID: 29745637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanically Robust, Inkjet-Printable Polymer Nanocomposites with Hybrid Gold Nanoparticles and Metal-like Conductivity.
    Klos MAH; González-García L; Kraus T
    ACS Appl Mater Interfaces; 2024 Jun; 16(24):31576-31585. PubMed ID: 38859578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxide rupture-induced conductivity in liquid metal nanoparticles by laser and thermal sintering.
    Liu S; Reed SN; Higgins MJ; Titus MS; Kramer-Bottiglio R
    Nanoscale; 2019 Oct; 11(38):17615-17629. PubMed ID: 31274138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Organizing, Environmentally Stable, and Low-Cost Copper-Nickel Complex Inks for Printed Flexible Electronics.
    Li W; Li L; Li F; Kawakami K; Sun Q; Nakayama T; Liu X; Kanehara M; Zhang J; Minari T
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8146-8156. PubMed ID: 35104116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Printed Low-Cost PEDOT:PSS/PVA Polymer Composite for Radiation Sterilization Monitoring.
    Heredia Rivera U; Kadian S; Nejati S; White J; Sedaghat S; Mutlu Z; Rahimi R
    ACS Sens; 2022 Apr; 7(4):960-971. PubMed ID: 35333058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layer Morphology and Ink Compatibility of Silver Nanoparticle Inkjet Inks for Near-Infrared Sintering.
    Reenaers D; Marchal W; Biesmans I; Nivelle P; D'Haen J; Deferme W
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32392730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conductive inks with a "built-in" mechanism that enables sintering at room temperature.
    Grouchko M; Kamyshny A; Mihailescu CF; Anghel DF; Magdassi S
    ACS Nano; 2011 Apr; 5(4):3354-9. PubMed ID: 21438563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital Light 3D Printing of PEDOT-Based Photopolymerizable Inks for Biosensing.
    Lopez-Larrea N; Criado-Gonzalez M; Dominguez-Alfaro A; Alegret N; Agua ID; Marchiori B; Mecerreyes D
    ACS Appl Polym Mater; 2022 Sep; 4(9):6749-6759. PubMed ID: 36119408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand Decomposition Differences during Thermal Sintering of Oleylamine-Capped Gold Nanoparticles in Ambient and Inert Environments: Implications for Conductive Inks.
    Chang K; Podder C; Pan H
    ACS Appl Nano Mater; 2023 Dec; 6(24):23418-23429. PubMed ID: 38356925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Efficiently Doped PEDOT:PSS Ink Formulation via Metastable Liquid-Liquid Contact for Capillary Flow-Driven, Hierarchically and Highly Conductive Films.
    Qiu J; Yu X; Wu X; Wu Z; Song Y; Zheng Q; Shan G; Ye H; Du M
    Small; 2023 Apr; 19(15):e2205324. PubMed ID: 36634985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.