These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30155086)

  • 21. Enhanced Spatial Charge Separation in a Niobium and Tantalum Nitride Core-Shell Photoanode: In Situ Interface Bonding for Efficient Solar Water Splitting.
    Zhang B; Fan Z; Chen Y; Feng C; Li S; Li Y
    Angew Chem Int Ed Engl; 2023 Sep; 62(36):e202305123. PubMed ID: 37462518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gradient doping of phosphorus in Fe
    Luo Z; Li C; Liu S; Wang T; Gong J
    Chem Sci; 2017 Jan; 8(1):91-100. PubMed ID: 28451152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced Charge Separation through ALD-Modified Fe2 O3 /Fe2 TiO5 Nanorod Heterojunction for Photoelectrochemical Water Oxidation.
    Li C; Wang T; Luo Z; Liu S; Gong J
    Small; 2016 Jul; 12(25):3415-22. PubMed ID: 27197643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Maximizing Oxygen Evolution Performance on a Transparent NiFeO
    Kawase Y; Higashi T; Katayama M; Domen K; Takanabe K
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16317-16325. PubMed ID: 33797878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Designing a Transparent CdIn
    Meng L; Wang M; Sun H; Tian W; Xiao C; Wu S; Cao F; Li L
    Adv Mater; 2020 Jul; 32(30):e2002893. PubMed ID: 32567132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 27. rGO decorated ZnO/CdO heterojunction as a photoanode for photoelectrochemical water splitting.
    Sun L; Sun J; Sun X; Bai S; Zhao Y; Luo R; Li D; Chen A
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2377-2386. PubMed ID: 34774314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of Hematite Photoanode Consisting of (110)-Oriented Single Crystals.
    Zhang H; He Y; Bao X; Wang Z; Jiang W; Zheng L; Fan Y; Zheng Z; Cheng H; Wang P; Liu Y; Wang Z; Huang B
    ChemSusChem; 2023 Oct; 16(19):e202300666. PubMed ID: 37505451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mg-Zr Cosubstituted Ta3N5 Photoanode for Lower-Onset-Potential Solar-Driven Photoelectrochemical Water Splitting.
    Seo J; Takata T; Nakabayashi M; Hisatomi T; Shibata N; Minegishi T; Domen K
    J Am Chem Soc; 2015 Oct; 137(40):12780-3. PubMed ID: 26426439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physicochemical insights into semiconductor properties of a semitransparent tantalum nitride photoanode for solar water splitting.
    Higashi T; Nishiyama H; Pihosh Y; Wakishima K; Kawase Y; Sasaki Y; Nagaoka A; Yoshino K; Takanabe K; Domen K
    Phys Chem Chem Phys; 2023 Aug; 25(30):20737-20748. PubMed ID: 37490272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BiVO
    Baek JH; Kim BJ; Han GS; Hwang SW; Kim DR; Cho IS; Jung HS
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1479-1487. PubMed ID: 27989115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoelectrochemical Solar Water Splitting: The Role of the Carbon Nanomaterials in Bismuth Vanadate Composite Photoanodes toward Efficient Charge Separation and Transport.
    Prakash J; Prasad U; Alexander R; Bahadur J; Dasgupta K; Kannan ANM
    Langmuir; 2019 Nov; 35(45):14492-14504. PubMed ID: 31618038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Situ Formation of Oxygen Vacancies Achieving Near-Complete Charge Separation in Planar BiVO
    Wang S; He T; Chen P; Du A; Ostrikov KK; Huang W; Wang L
    Adv Mater; 2020 Jul; 32(26):e2001385. PubMed ID: 32406092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thin film transfer for the fabrication of tantalum nitride photoelectrodes with controllable layered structures for water splitting.
    Wang C; Hisatomi T; Minegishi T; Nakabayashi M; Shibata N; Katayama M; Domen K
    Chem Sci; 2016 Sep; 7(9):5821-5826. PubMed ID: 30034721
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fe
    Wang Q; Zong X; Tian L; Han Y; Ding Y; Xu C; Tao R; Fan X
    ChemSusChem; 2022 Mar; 15(5):e202102377. PubMed ID: 35014210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facile Fabrication of a Highly Crystalline and Well-Interconnected Hematite Nanoparticle Photoanode for Efficient Visible-Light-Driven Water Oxidation.
    Katsuki T; Zahran ZN; Tanaka K; Eo T; Mohamed EA; Tsubonouchi Y; Berber MR; Yagi M
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39282-39290. PubMed ID: 34387481
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integration of Oxygen-Vacancy-Rich NiFe-Layered Double Hydroxide onto Silicon as Photoanode for Enhanced Photoelectrochemical Water Oxidation.
    Chen C; Lu Y; Fan R; Shen M
    ChemSusChem; 2020 Aug; 13(15):3893-3900. PubMed ID: 32400054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New aspects of improving the performance of WO
    Cen J; Wu Q; Yan D; Zhang W; Zhao Y; Tong X; Liu M; Orlov A
    RSC Adv; 2019 Jan; 9(2):899-905. PubMed ID: 35517607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Electrochemically Treated BiVO
    Wang S; Chen P; Yun JH; Hu Y; Wang L
    Angew Chem Int Ed Engl; 2017 Jul; 56(29):8500-8504. PubMed ID: 28516511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Charge separation properties of Ta
    Han SG; Chae SY; Lee SY; Min BK; Hwang YJ
    Phys Chem Chem Phys; 2018 Jan; 20(4):2865-2871. PubMed ID: 29327002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.