These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30155207)

  • 1. Reaction discovery using acetylene gas as the chemical feedstock accelerated by the "stop-flow" micro-tubing reactor system.
    Xue F; Deng H; Xue C; Mohamed DKB; Tang KY; Wu J
    Chem Sci; 2017 May; 8(5):3623-3627. PubMed ID: 30155207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of Stop-flow Micro-tubing Reactors for the Development of Organic Transformations.
    Toh RW; Li JS; Wu J
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29364262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.
    Brzozowski M; O'Brien M; Ley SV; Polyzos A
    Acc Chem Res; 2015 Feb; 48(2):349-62. PubMed ID: 25611216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual reactor for in situ/operando fluorescent mode XAS studies of sample containing low-concentration 3d or 5d metal elements.
    Nguyen L; Tang Y; Li Y; Zhang X; Wang D; Tao FF
    Rev Sci Instrum; 2018 May; 89(5):054103. PubMed ID: 29864830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure-accelerated azide-alkyne cycloaddition: micro capillary versus autoclave reactor performance.
    Borukhova S; Seeger AD; Noël T; Wang Q; Busch M; Hessel V
    ChemSusChem; 2015 Feb; 8(3):504-12. PubMed ID: 25522301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerating gas-liquid chemical reactions in flow.
    Han S; Kashfipour MA; Ramezani M; Abolhasani M
    Chem Commun (Camb); 2020 Sep; 56(73):10593-10606. PubMed ID: 32785297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From discovery to production: scale-out of continuous flow meso reactors.
    Styring P; Parracho AI
    Beilstein J Org Chem; 2009 Jun; 5():29. PubMed ID: 19590741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A practical flow reactor for continuous organic photochemistry.
    Hook BD; Dohle W; Hirst PR; Pickworth M; Berry MB; Booker-Milburn KI
    J Org Chem; 2005 Sep; 70(19):7558-64. PubMed ID: 16149784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas-Directed Production of Noble Metal-Magnetic Heteronanostructures in Continuous Fashion: Application in Catalysis.
    Larrea A; Eguizabal A; Sebastián V
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43520-43532. PubMed ID: 31664814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow-Through Catalytic Reactors Based on Metal Nanoparticles Immobilized within Porous Polymeric Gels and Surfaces/Hollows of Polymeric Membranes.
    Kudaibergenov SE; Dzhardimalieva GI
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32143486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A flow reactor setup for photochemistry of biphasic gas/liquid reactions.
    Schachtner J; Bayer P; Jacobi von Wangelin A
    Beilstein J Org Chem; 2016; 12():1798-1811. PubMed ID: 27829887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An immobilized cell reactor with simultaneous product separation. II. Experimental reactor performance.
    Dale MC; Okos MR; Wankat PC
    Biotechnol Bioeng; 1985 Jul; 27(7):943-52. PubMed ID: 18553763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerobic granular sludge operation and nutrients removal mechanism in a novel configuration reactor combined sequencing batch reactor and continuous-flow reactor.
    Li D; Zhang S; Li S; Zeng H; Zhang J
    Bioresour Technol; 2019 Nov; 292():122024. PubMed ID: 31450062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A micro-jet array for economic intensification of gas transfer in bioreactors.
    Turney DE; Ansari M; Kalaga DV; Yakobov R; Banerjee S; Joshi JB
    Biotechnol Prog; 2019 Jan; 35(1):e2710. PubMed ID: 30295002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous-flow biodiesel production using slit-channel reactors.
    Kalu EE; Chen KS; Gedris T
    Bioresour Technol; 2011 Mar; 102(6):4456-61. PubMed ID: 21256742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic multi-input reactor for biocatalytic synthesis using transketolase.
    Lawrence J; O'Sullivan B; Lye GJ; Wohlgemuth R; Szita N
    J Mol Catal B Enzym; 2013 Nov; 95(100):111-117. PubMed ID: 24187515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes.
    Moreno-Marrodan C; Liguori F; Barbaro P
    Beilstein J Org Chem; 2017; 13():734-754. PubMed ID: 28503209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Olefin Metathesis in Continuous Flow Reactor Employing Polar Ruthenium Catalyst and Soluble Metal Scavenger for Instant Purification of Products of Pharmaceutical Interest.
    Toh RW; Patrzałek M; Nienałtowski T; Piątkowski J; Kajetanowicz A; Wu J; Grela K
    ACS Sustain Chem Eng; 2021 Dec; 9(48):16450-16458. PubMed ID: 34900446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Modular Millifluidic Platform for the Synthesis of Iron Oxide Nanoparticles with Control over Dissolved Gas and Flow Configuration.
    Panariello L; Wu G; Besenhard MO; Loizou K; Storozhuk L; Thanh NTK; Gavriilidis A
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32106389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.