These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 30155227)
1. Pyridalthiadiazole acceptor-functionalized triarylboranes with multi-responsive optoelectronic characteristics. Yin X; Liu K; Ren Y; Lalancette RA; Loo YL; Jäkle F Chem Sci; 2017 Aug; 8(8):5497-5505. PubMed ID: 30155227 [TBL] [Abstract][Full Text] [Related]
2. Impact of donor-acceptor geometry and metal chelation on photophysical properties and applications of triarylboranes. Hudson ZM; Wang S Acc Chem Res; 2009 Oct; 42(10):1584-96. PubMed ID: 19558183 [TBL] [Abstract][Full Text] [Related]
3. Highly electron-deficient and air-stable conjugated thienylboranes. Yin X; Chen J; Lalancette RA; Marder TB; Jäkle F Angew Chem Int Ed Engl; 2014 Sep; 53(37):9761-5. PubMed ID: 25044554 [TBL] [Abstract][Full Text] [Related]
4. C-Halogenated 9,10-Diboraanthracenes: How the Halogen Load and Distribution Influences Key Optoelectronic Properties. Brend'amour S; Gilmer J; Bolte M; Lerner HW; Wagner M Chemistry; 2018 Nov; 24(63):16910-16918. PubMed ID: 30378720 [TBL] [Abstract][Full Text] [Related]
5. Molecular Acceptors Based on a Triarylborane Core Unit for Organic Solar Cells. Yu Y; Meng B; Jäkle F; Liu J; Wang L Chemistry; 2020 Jan; 26(4):873-880. PubMed ID: 31691387 [TBL] [Abstract][Full Text] [Related]
6. Enhancing the Acceptor Character of Conjugated Organoborane Macrocycles: A Highly Electron-Deficient Hexaboracyclophane. Baser-Kirazli N; Lalancette RA; Jäkle F Angew Chem Int Ed Engl; 2020 May; 59(22):8689-8697. PubMed ID: 32129932 [TBL] [Abstract][Full Text] [Related]
7. Highly Electron-Deficient Dicyanomethylene-Functionalized Triarylboranes with Low-Lying LUMO and Strong Lewis Acidity. Liao G; Chen X; Qiao Y; Liu K; Wang N; Chen P; Yin X Org Lett; 2021 Aug; 23(15):5836-5841. PubMed ID: 34251839 [TBL] [Abstract][Full Text] [Related]
8. Experimental and theoretical studies on organic D-π-A systems containing three-coordinate boron moieties as both π-donor and π-acceptor. Weber L; Eickhoff D; Marder TB; Fox MA; Low PJ; Dwyer AD; Tozer DJ; Schwedler S; Brockhinke A; Stammler HG; Neumann B Chemistry; 2012 Jan; 18(5):1369-82. PubMed ID: 22213064 [TBL] [Abstract][Full Text] [Related]
9. Deboronation-Induced Ratiometric Emission Variations of Terphenyl-Based So H; Mun MS; Kim M; Kim JH; Lee JH; Hwang H; An DK; Lee KM Molecules; 2020 May; 25(10):. PubMed ID: 32455846 [No Abstract] [Full Text] [Related]
10. p-π Conjugated Polymers Based on Stable Triarylborane with n-Type Behavior in Optoelectronic Devices. Meng B; Ren Y; Liu J; Jäkle F; Wang L Angew Chem Int Ed Engl; 2018 Feb; 57(8):2183-2187. PubMed ID: 29314598 [TBL] [Abstract][Full Text] [Related]
11. Lewis acidity enhancement of triarylborane by appended phosphine oxide groups. Kwak J; Nghia NV; Lee J; Kim H; Park MH; Lee MH Dalton Trans; 2015 Mar; 44(10):4765-72. PubMed ID: 25668014 [TBL] [Abstract][Full Text] [Related]
12. Aggregation-induced emission of diarylamino-π-carborane triads: effects of charge transfer and π-conjugation. Cho YJ; Kim SY; Cho M; Han WS; Son HJ; Cho DW; Kang SO Phys Chem Chem Phys; 2016 Apr; 18(14):9702-8. PubMed ID: 26996491 [TBL] [Abstract][Full Text] [Related]
13. Functionalized dibenzoborepins as components of small molecule and polymeric π-conjugated electronic materials. Caruso A; Tovar JD J Org Chem; 2011 Apr; 76(7):2227-39. PubMed ID: 21351778 [TBL] [Abstract][Full Text] [Related]
14. Anion-Responsive Colorimetric and Fluorometric Red-Shift in Triarylborane Derivatives: Dual Role of Phenazaborine as Lewis Acid and Electron Donor. Aota N; Nakagawa R; de Sousa LE; Tohnai N; Minakata S; de Silva P; Takeda Y Angew Chem Int Ed Engl; 2024 Jun; 63(24):e202405158. PubMed ID: 38587303 [TBL] [Abstract][Full Text] [Related]
15. Boron-doped tri(9,10-anthrylene)s: synthesis, structural characterization, and optoelectronic properties. Hoffend C; Schödel F; Bolte M; Lerner HW; Wagner M Chemistry; 2012 Nov; 18(48):15394-405. PubMed ID: 23108703 [TBL] [Abstract][Full Text] [Related]
16. Influence of π-conjugation structural changes on intramolecular charge transfer and photoinduced electron transfer in donor-π-acceptor dyads. Kim SY; Cho YJ; Lee AR; Son HJ; Han WS; Cho DW; Kang SO Phys Chem Chem Phys; 2016 Dec; 19(1):426-435. PubMed ID: 27905585 [TBL] [Abstract][Full Text] [Related]
17. Organic super-acceptors with efficient intramolecular charge-transfer interactions by [2+2] cycloadditions of TCNE, TCNQ, and F4-TCNQ to donor-substituted cyanoalkynes. Kivala M; Boudon C; Gisselbrecht JP; Enko B; Seiler P; Müller IB; Langer N; Jarowski PD; Gescheidt G; Diederich F Chemistry; 2009; 15(16):4111-23. PubMed ID: 19266523 [TBL] [Abstract][Full Text] [Related]
18. Luminescent Quadrupolar Borazine Oligomers: Synthesis, Photophysics, and Two-Photon Absorption Properties. Chen P; Marshall AS; Chi SH; Yin X; Perry JW; Jäkle F Chemistry; 2015 Dec; 21(50):18237-47. PubMed ID: 26514664 [TBL] [Abstract][Full Text] [Related]
19. Tuning the Properties of Donor-Acceptor and Acceptor-Donor-Acceptor Boron Difluoride Hydrazones Cappello D; Buguis FL; Gilroy JB ACS Omega; 2022 Sep; 7(36):32727-32739. PubMed ID: 36120012 [TBL] [Abstract][Full Text] [Related]
20. Synthetic control of spectroscopic and photophysical properties of triarylborane derivatives having peripheral electron-donating groups. Ito A; Kawanishi K; Sakuda E; Kitamura N Chemistry; 2014 Apr; 20(14):3940-53. PubMed ID: 24644157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]