These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 30155511)
1. Dual-energy computed tomography using a gantry-based preclinical cone-beam microcomputed tomography scanner. Tse JJ; Dunmore-Buyze J; Drangova M; Holdsworth DW J Med Imaging (Bellingham); 2018 Jul; 5(3):033503. PubMed ID: 30155511 [TBL] [Abstract][Full Text] [Related]
2. Exact dual energy material decomposition from inconsistent rays (MDIR). Maass C; Meyer E; Kachelriess M Med Phys; 2011 Feb; 38(2):691-700. PubMed ID: 21452706 [TBL] [Abstract][Full Text] [Related]
3. Implementation of dual- and triple-energy cone-beam micro-CT for postreconstruction material decomposition. Granton PV; Pollmann SI; Ford NL; Drangova M; Holdsworth DW Med Phys; 2008 Nov; 35(11):5030-42. PubMed ID: 19070237 [TBL] [Abstract][Full Text] [Related]
4. Image-based dual energy CT using optimized precorrection functions: a practical new approach of material decomposition in image domain. Maass C; Baer M; Kachelriess M Med Phys; 2009 Aug; 36(8):3818-29. PubMed ID: 19746815 [TBL] [Abstract][Full Text] [Related]
5. Optimized low-kV spectrum of dual-energy CT equipped with high-kV tin filtration for electron density measurements. Saito M Med Phys; 2011 Jun; 38(6):2850-8. PubMed ID: 21815360 [TBL] [Abstract][Full Text] [Related]
6. Dual-energy CT quantitative imaging: a comparison study between twin-beam and dual-source CT scanners. Almeida IP; Schyns LE; Ă–llers MC; van Elmpt W; Parodi K; Landry G; Verhaegen F Med Phys; 2017 Jan; 44(1):171-179. PubMed ID: 28070917 [TBL] [Abstract][Full Text] [Related]
7. Accurate 3D data stitching in circular cone-beam micro-CT. Ji C J Xray Sci Technol; 2010; 18(2):99-110. PubMed ID: 20495238 [TBL] [Abstract][Full Text] [Related]
8. Monte Carlo proton dose calculations using a radiotherapy specific dual-energy CT scanner for tissue segmentation and range assessment. Almeida IP; Schyns LEJR; Vaniqui A; van der Heyden B; Dedes G; Resch AF; Kamp F; Zindler JD; Parodi K; Landry G; Verhaegen F Phys Med Biol; 2018 May; 63(11):115008. PubMed ID: 29616662 [TBL] [Abstract][Full Text] [Related]
9. A unified material decomposition framework for quantitative dual- and triple-energy CT imaging. Zhao W; Vernekohl D; Han F; Han B; Peng H; Yang Y; Xing L; Min JK Med Phys; 2018 Jul; 45(7):2964-2977. PubMed ID: 29679500 [TBL] [Abstract][Full Text] [Related]
10. Microscopic dual-energy CT (microDECT): a flexible tool for multichannel ex vivo 3D imaging of biological specimens. Handschuh S; Beisser CJ; Ruthensteiner B; Metscher BD J Microsc; 2017 Jul; 267(1):3-26. PubMed ID: 28267884 [TBL] [Abstract][Full Text] [Related]
11. Flat panel detector-based cone beam computed tomography with a circle-plus-two-arcs data acquisition orbit: preliminary phantom study. Ning R; Tang X; Conover D; Yu R Med Phys; 2003 Jul; 30(7):1694-705. PubMed ID: 12906186 [TBL] [Abstract][Full Text] [Related]
12. Correlation of quantitative dual-energy computed tomography iodine maps and abdominal computed tomography perfusion measurements: are single-acquisition dual-energy computed tomography iodine maps more than a reduced-dose surrogate of conventional computed tomography perfusion? Stiller W; Skornitzke S; Fritz F; Klauss M; Hansen J; Pahn G; Grenacher L; Kauczor HU Invest Radiol; 2015 Oct; 50(10):703-8. PubMed ID: 26039774 [TBL] [Abstract][Full Text] [Related]
13. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Jaffray DA; Siewerdsen JH; Wong JW; Martinez AA Int J Radiat Oncol Biol Phys; 2002 Aug; 53(5):1337-49. PubMed ID: 12128137 [TBL] [Abstract][Full Text] [Related]
14. Spectral material characterization with dual-energy CT: comparison of commercial and investigative technologies in phantoms. Gabbai M; Leichter I; Mahgerefteh S; Sosna J Acta Radiol; 2015 Aug; 56(8):960-9. PubMed ID: 25182803 [TBL] [Abstract][Full Text] [Related]
15. Empirical beam hardening correction (EBHC) for CT. Kyriakou Y; Meyer E; Prell D; Kachelriess M Med Phys; 2010 Oct; 37(10):5179-87. PubMed ID: 21089751 [TBL] [Abstract][Full Text] [Related]
16. Strategies to Improve Image Quality on Dual-Energy Computed Tomography. Patel BN; Marin D Radiol Clin North Am; 2018 Jul; 56(4):641-647. PubMed ID: 29936952 [TBL] [Abstract][Full Text] [Related]
17. Single-Scan Dual-Energy CT Using Primary Modulation. Petrongolo M; Zhu L IEEE Trans Med Imaging; 2018 Aug; 37(8):1799-1808. PubMed ID: 29994601 [TBL] [Abstract][Full Text] [Related]
18. Technical note: optimization for improved tube-loading efficiency in the dual-energy computed tomography coupled with balanced filter method. Saito M Med Phys; 2010 Aug; 37(8):4182-5. PubMed ID: 20879578 [TBL] [Abstract][Full Text] [Related]
19. Performance evaluation of an 85-cm-bore X-ray computed tomography scanner designed for radiation oncology and comparison with current diagnostic CT scanners. Garcia-Ramirez JL; Mutic S; Dempsey JF; Low DA; Purdy JA Int J Radiat Oncol Biol Phys; 2002 Mar; 52(4):1123-31. PubMed ID: 11958910 [TBL] [Abstract][Full Text] [Related]
20. Detecting Intracranial Hemorrhage Using Automatic Tube Current Modulation With Advanced Modeled Iterative Reconstruction in Unenhanced Head Single- and Dual-Energy Dual-Source CT. Scholtz JE; Wichmann JL; Bennett DW; Leithner D; Bauer RW; Vogl TJ; Bodelle B AJR Am J Roentgenol; 2017 May; 208(5):1089-1096. PubMed ID: 28245141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]