These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 30155807)

  • 1. Monte Carlo based determination of dose distribution for some patch sources employed for radionuclide skin therapy.
    Afzalifar A; Bashi M; Mowlavi AA; Fornasier MR; Baghani HR
    Australas Phys Eng Sci Med; 2018 Dec; 41(4):853-860. PubMed ID: 30155807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulations of a kilovoltage external beam radiotherapy system on phantoms and breast patients.
    Breitkreutz DY; Weil MD; Zavgorodni S; Bazalova-Carter M
    Med Phys; 2017 Dec; 44(12):6548-6559. PubMed ID: 28986987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte carlo electron source model validation for an Elekta Precise linac.
    Ali OA; Willemse CA; Shaw W; O'Reilly FH; du Plessis FC
    Med Phys; 2011 May; 38(5):2366-73. PubMed ID: 21776771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel conformal superficial high-dose-rate brachytherapy device for the treatment of nonmelanoma skin cancer and keloids.
    Ferreira C; Johnson D; Rasmussen K; Leinweber C; Ahmad S; Jung JW
    Brachytherapy; 2017; 16(1):215-222. PubMed ID: 27720205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of external beam radiation therapy to deep-seated targets with kilovoltage x-rays.
    Bazalova-Carter M; Weil MD; Breitkreutz DY; Wilfley BP; Graves EE
    Med Phys; 2017 Feb; 44(2):597-607. PubMed ID: 28133751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the initial beam parameters in Monte Carlo linac simulation.
    Aljarrah K; Sharp GC; Neicu T; Jiang SB
    Med Phys; 2006 Apr; 33(4):850-8. PubMed ID: 16696460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of surface dose rate of indigenous (32)P patch brachytherapy source by experimental and Monte Carlo methods.
    Kumar S; Srinivasan P; Sharma SD; Saxena SK; Bakshi AK; Dash A; Babu DA; Sharma DN
    Appl Radiat Isot; 2015 Sep; 103():120-7. PubMed ID: 26086681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo dose voxel kernel calculations of beta-emitting and Auger-emitting radionuclides for internal dosimetry: A comparison between EGSnrcMP and EGS4.
    Strigari L; Menghi E; D'Andrea M; Benassi M
    Med Phys; 2006 Sep; 33(9):3383-9. PubMed ID: 17022234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Simulation of dose distribution in bone medium of
    Ye KQ; Huang MW; Li JL; Tang JT; Zhang JG
    Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Feb; 50(1):131-135. PubMed ID: 29483735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of
    Safigholi H; Meigooni AS; Song WY
    Med Phys; 2017 Sep; 44(9):4426-4436. PubMed ID: 28494095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations.
    Pacilio M; Lanconelli N; Lo MS; Betti M; Montani L; Torres AL; Coca PM
    Med Phys; 2009 May; 36(5):1543-52. PubMed ID: 19544770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EGSnrc-based Monte Carlo dosimetry of CSA1 and CSA2 137Cs brachytherapy source models.
    Selvam TP; Sahoo S; Vishwakarma RS
    Med Phys; 2009 Sep; 36(9):3870-9. PubMed ID: 19810459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiation dose distribution in human kidneys by octreotides in peptide receptor radionuclide therapy.
    Konijnenberg M; Melis M; Valkema R; Krenning E; de Jong M
    J Nucl Med; 2007 Jan; 48(1):134-42. PubMed ID: 17204710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams.
    Chow JC; Jiang R
    Phys Med Biol; 2012 Jun; 57(12):3885-99. PubMed ID: 22642985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton microbeam radiotherapy with scanned pencil-beams--Monte Carlo simulations.
    Kłodowska M; Olko P; Waligórski MP
    Phys Med; 2015 Sep; 31(6):621-6. PubMed ID: 25982232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multiwell applicator for conformal brachytherapy of superficial skin tumors: A simulation study.
    Pashazadeh A; Robatjazi M; Castro NJ; Friebe M
    Skin Res Technol; 2020 Jul; 26(4):537-541. PubMed ID: 31883147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental verification of 4D Monte Carlo simulations of dose delivery to a moving anatomy.
    Gholampourkashi S; Vujicic M; Belec J; Cygler JE; Heath E
    Med Phys; 2017 Jan; 44(1):299-310. PubMed ID: 28102956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superficial dose distribution in breast for tangential radiation treatment, Monte Carlo evaluation of Eclipse algorithms in case of phantom and patient geometries.
    Chakarova R; Gustafsson M; Bäck A; Drugge N; Palm Å; Lindberg A; Berglund M
    Radiother Oncol; 2012 Jan; 102(1):102-7. PubMed ID: 21741719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction factors for source strength determination in HDR brachytherapy using the in-phantom method.
    Ubrich F; Wulff J; Engenhart-Cabillic R; Zink K
    Z Med Phys; 2014 May; 24(2):138-52. PubMed ID: 24021956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface dosimetry for oblique tangential photon beams: a Monte Carlo simulation study.
    Chow JC; Grigorov GN
    Med Phys; 2008 Jan; 35(1):70-6. PubMed ID: 18293563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.