These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30156096)

  • 1. Scalable Nanogap Sensors for Non-Redox Enzyme Assays.
    Su X; Tayebi N; Credo GM; Wu K; Elibol OH; Liu DJ; Daniels JS; Li H; Hall DA; Varma M
    ACS Sens; 2018 Sep; 3(9):1773-1781. PubMed ID: 30156096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-magnetohydrodynamic microfluidics without channels and compatible with electrochemical detection under immunoassay conditions.
    Weston MC; Nash CK; Fritsch I
    Anal Chem; 2010 Sep; 82(17):7068-72. PubMed ID: 20681513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox cycling amplified electrochemical detection of DNA hybridization: application to pathogen E. coli bacterial RNA.
    Walter A; Wu J; Flechsig GU; Haake DA; Wang J
    Anal Chim Acta; 2011 Mar; 689(1):29-33. PubMed ID: 21338752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Outer-sphere to inner-sphere" redox cycling for ultrasensitive immunosensors.
    Akanda MR; Choe YL; Yang H
    Anal Chem; 2012 Jan; 84(2):1049-55. PubMed ID: 22208164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electrochemical enzyme bioaffinity electrode based on biotin-streptavidin conjunction and bienzyme substrate recycling for amplification.
    Yuan Y; Yuan R; Chai Y; Zhuo Y; Bai L; Liao Y
    Anal Biochem; 2010 Oct; 405(1):121-6. PubMed ID: 20507824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly sensitive endotoxin sensor based on redox cycling in a nanocavity.
    Ito K; Inoue KY; Ino K; Matsue T; Shiku H
    Analyst; 2019 Jun; 144(11):3659-3667. PubMed ID: 31074478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time electrochemical monitoring of the polymerase chain reaction by mediated redox catalysis.
    Deféver T; Druet M; Rochelet-Dequaire M; Joannes M; Grossiord C; Limoges B; Marchal D
    J Am Chem Soc; 2009 Aug; 131(32):11433-41. PubMed ID: 19722651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroquinone diphosphate as a phosphatase substrate in enzymatic amplification combined with electrochemical-chemical-chemical redox cycling for the detection of E. coli O157:H7.
    Akanda MR; Tamilavan V; Park S; Jo K; Hyun MH; Yang H
    Anal Chem; 2013 Feb; 85(3):1631-6. PubMed ID: 23327094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-linked electrochemical DNA ligation assay using magnetic beads.
    Stejskalová E; Horáková P; Vacek J; Bowater RP; Fojta M
    Anal Bioanal Chem; 2014 Jul; 406(17):4129-36. PubMed ID: 24820061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical immunosensor using p-aminophenol redox cycling by hydrazine combined with a low background current.
    Das J; Jo K; Lee JW; Yang H
    Anal Chem; 2007 Apr; 79(7):2790-6. PubMed ID: 17311407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay.
    Niwa O; Xu Y; Halsall HB; Heineman WR
    Anal Chem; 1993 Jun; 65(11):1559-63. PubMed ID: 8328672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly-sensitive electrochemical immunosensing method based on dual amplification systems.
    Yasukawa T; Yoshimoto Y; Goto T; Mizutani F
    Biosens Bioelectron; 2012; 37(1):19-23. PubMed ID: 22608766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Pt layer/Pt disk electrode configuration to evaluate respiration and alkaline phosphatase activities of mouse embryoid bodies.
    Obregon R; Horiguchi Y; Arai T; Abe S; Zhou Y; RyosukeTakahashi ; Hisada A; Ino K; Shiku H; Matsue T
    Talanta; 2012 May; 94():30-5. PubMed ID: 22608410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive Protease Sensors Using Selective Affinity Binding, Selective Proteolytic Reaction, and Proximity-Dependent Electrochemical Reaction.
    Park S; Kim G; Seo J; Yang H
    Anal Chem; 2016 Dec; 88(24):11995-12000. PubMed ID: 28193073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catechol-chitosan redox capacitor for added amplification in electrochemical immunoanalysis.
    Yan K; Liu Y; Guan Y; Bhokisham N; Tsao CY; Kim E; Shi XW; Wang Q; Bentley WE; Payne GF
    Colloids Surf B Biointerfaces; 2018 Sep; 169():470-477. PubMed ID: 29852436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electrochemical microRNAs biosensor with the signal amplification of alkaline phosphatase and electrochemical-chemical-chemical redox cycling.
    Xia N; Zhang Y; Wei X; Huang Y; Liu L
    Anal Chim Acta; 2015 Jun; 878():95-101. PubMed ID: 26002330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electrochemical immunosensor using p-aminophenol redox cycling by NADH on a self-assembled monolayer and ferrocene-modified Au electrodes.
    Kwon SJ; Yang H; Jo K; Kwak J
    Analyst; 2008 Nov; 133(11):1599-604. PubMed ID: 18936839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenothiazine-linked nucleosides and nucleotides for redox labelling of DNA.
    Simonova A; Havran L; Pohl R; Fojta M; Hocek M
    Org Biomol Chem; 2017 Aug; 15(33):6984-6996. PubMed ID: 28792547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor.
    Feng L; Sivanesan A; Lyu Z; Offenhäusser A; Mayer D
    Biosens Bioelectron; 2015 Apr; 66():62-8. PubMed ID: 25460883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox-magnetohydrodynamics, flat flow profile-guided enzyme assay detection: toward multiple, parallel analyses.
    Sahore V; Fritsch I
    Anal Chem; 2014 Oct; 86(19):9405-11. PubMed ID: 25171501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.