These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 3015652)

  • 61. Monosynaptic transmission from afferents of one segment to motoneurons of other segments in the spinal cord.
    Meij HS; Holemans KC; Meyer BJ
    Exp Neurol; 1966 Apr; 14(4):496-505. PubMed ID: 4378203
    [No Abstract]   [Full Text] [Related]  

  • 62. Changes in serotonin-induced potentials during spinal cord development.
    Ziskind-Conhaim L; Seebach BS; Gao BX
    J Neurophysiol; 1993 Apr; 69(4):1338-49. PubMed ID: 8388043
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Long-range afferents in the rat spinal cord. II. Arborizations that penetrate grey matter.
    Shortland P; Wall PD
    Philos Trans R Soc Lond B Biol Sci; 1992 Sep; 337(1282):445-55. PubMed ID: 1279734
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Effect of calcium deficiency and addition of calcium antagonists on motoneuron synaptic potentials of isolated Emys orbicularis turtle spinal cord].
    Batueva IV
    Zh Evol Biokhim Fiziol; 1980; 16(4):365-70. PubMed ID: 6252732
    [TBL] [Abstract][Full Text] [Related]  

  • 65. White-matter dendrites in the upper cervical spinal cord of the adult cat: a light and electron microscopic study.
    Rose PK; Richmond FJ
    J Comp Neurol; 1981 Jun; 199(2):191-203. PubMed ID: 7251939
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Synaptic organization of tectal-facial pathways in cat. II. Synaptic potentials following midbrain tegmentum stimulation.
    May PJ; Vidal PP; Baker R
    J Neurophysiol; 1990 Aug; 64(2):381-402. PubMed ID: 1698936
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A quantitative study of the central projection patterns of unmyelinated ventral root afferents in the cat.
    Häbler HJ; Jänig W; Koltzenburg M; McMahon SB
    J Physiol; 1990 Mar; 422():265-87. PubMed ID: 2352181
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal, and upper thoracic spinal nuclei.
    Neuhuber WL; Zenker W
    J Comp Neurol; 1989 Feb; 280(2):231-53. PubMed ID: 2466876
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The distribution of motoneurons supplying hind limb muscles in the clawed toad, Xenopus laevis.
    Hulshof JB; de Boer-van Huizen R; ten Donkelaar HJ
    Acta Morphol Neerl Scand; 1987; 25(1):1-16. PubMed ID: 3439496
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Distribution of monosynaptic Ia excitatory post-synaptic potentials in the motor nucleus of the cat semitendinosus muscle.
    Botterman BR; Hamm TM; Reinking RM; Stuart DG
    J Physiol; 1983 May; 338():379-93. PubMed ID: 6224004
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Field potentials generated by group II muscle afferents in the lower-lumbar segments of the feline spinal cord.
    Riddell JS; Hadian M
    J Physiol; 2000 Jan; 522 Pt 1(Pt 1):97-108. PubMed ID: 10618155
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Development of motoneurons and primary sensory afferents in the thoracic and lumbar spinal cord of the South American opossum Monodelphis domestica.
    Knott GW; Kitchener PD; Saunders NR
    J Comp Neurol; 1999 Nov; 414(4):423-36. PubMed ID: 10531537
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Excitatory and inhibitory transmission from dorsal root afferents to neonate rat motoneurons in vitro.
    Jiang ZG; Shen E; Dun NJ
    Brain Res; 1990 Dec; 535(1):110-8. PubMed ID: 1963341
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Maturation in properties of motoneurons and their segmental input in the neonatal rat.
    Seebach BS; Mendell LM
    J Neurophysiol; 1996 Dec; 76(6):3875-85. PubMed ID: 8985885
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Reexamination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers.
    Light AR; Perl ER
    J Comp Neurol; 1979 Jul; 186(2):117-31. PubMed ID: 447880
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Morphological and electrophysiological analysis of the peripheral and central afferent pathways from the clitoris of the cat.
    Kawatani M; Tanowitz M; de Groat WC
    Brain Res; 1994 May; 646(1):26-36. PubMed ID: 7519963
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Peripheral and central control of flexor digitorum longus and flexor hallucis longus motoneurons: the synaptic basis of functional diversity.
    Fleshman JW; Lev-Tov A; Burke RE
    Exp Brain Res; 1984; 54(1):133-49. PubMed ID: 6321220
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Anatomical basis of specific connections between sensory axons and motor neurons in the brachial spinal cord of the bullfrog.
    Lichtman JW; Jhaveri S; Frank E
    J Neurosci; 1984 Jul; 4(7):1754-63. PubMed ID: 6610729
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Spinal ascending pathways in amphibians: cells of origin and main targets.
    Muñoz A; Muñoz M; González A; ten Donkelaar HJ
    J Comp Neurol; 1997 Feb; 378(2):205-28. PubMed ID: 9120061
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Postsynaptic effects of long-range afferents in distant segments caudal to their entry point in rat spinal cord under the influence of picrotoxin or strychnine.
    Wall PD; Bennett DL
    J Neurophysiol; 1994 Dec; 72(6):2703-13. PubMed ID: 7897483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.