BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30156560)

  • 1. Graphene growth through a recrystallization process in plasma enhanced chemical vapor deposition.
    Bekdüz B; Beckmann Y; Mischke J; Twellmann J; Mertin W; Bacher G
    Nanotechnology; 2018 Nov; 29(45):455603. PubMed ID: 30156560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct growth of graphene on Ge(100) and Ge(110) via thermal and plasma enhanced CVD.
    Bekdüz B; Kaya U; Langer M; Mertin W; Bacher G
    Sci Rep; 2020 Jul; 10(1):12938. PubMed ID: 32737382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres.
    Strudwick AJ; Weber NE; Schwab MG; Kettner M; Weitz RT; Wünsch JR; Müllen K; Sachdev H
    ACS Nano; 2015 Jan; 9(1):31-42. PubMed ID: 25398132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films.
    Tao L; Lee J; Chou H; Holt M; Ruoff RS; Akinwande D
    ACS Nano; 2012 Mar; 6(3):2319-25. PubMed ID: 22314052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-step growth of graphene and graphene-based nanostructures by plasma-enhanced chemical vapor deposition.
    Yeh NC; Hsu CC; Bagley J; Tseng WS
    Nanotechnology; 2019 Apr; 30(16):162001. PubMed ID: 30634178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low temperature critical growth of high quality nitrogen doped graphene on dielectrics by plasma-enhanced chemical vapor deposition.
    Wei D; Peng L; Li M; Mao H; Niu T; Han C; Chen W; Wee AT
    ACS Nano; 2015 Jan; 9(1):164-71. PubMed ID: 25581685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation between growth rate and structure of graphene grown in a 4″ showerhead chemical vapor deposition reactor.
    Bekdüz B; Beckmann Y; Meier J; Rest J; Mertin W; Bacher G
    Nanotechnology; 2017 May; 28(18):185601. PubMed ID: 28388593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of low temperature graphene synthesis in inductively coupled plasma chemical vapor deposition process with optical emission spectroscopy.
    Ma Y; Kim D; Jang H; Cho SM; Chae H
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9065-72. PubMed ID: 25971011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal stability of multilayer graphene films synthesized by chemical vapor deposition and stained by metallic impurities.
    Kahng YH; Lee S; Park W; Jo G; Choe M; Lee JH; Yu H; Lee T; Lee K
    Nanotechnology; 2012 Feb; 23(7):075702. PubMed ID: 22261350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation and growth dynamics of graphene grown by radio frequency plasma-enhanced chemical vapor deposition.
    Li N; Zhen Z; Zhang R; Xu Z; Zheng Z; He L
    Sci Rep; 2021 Mar; 11(1):6007. PubMed ID: 33727653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical vapor deposition of N-doped graphene and carbon films: the role of precursors and gas phase.
    Ito Y; Christodoulou C; Nardi MV; Koch N; Sachdev H; Müllen K
    ACS Nano; 2014 Apr; 8(4):3337-46. PubMed ID: 24641621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Raman spectra analysis of bromine doped hydrogenated amorphous carbon (a-C : Br : H) films deposited by RF-PECVD].
    Feng JH; Lu TC; Wu WD; Jia P
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3309-11. PubMed ID: 20210157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular understanding of the effect of hydrogen on graphene growth by plasma-enhanced chemical vapor deposition.
    Wu S; Huang D; Yu H; Tian S; Malik A; Luo T; Xiong G
    Phys Chem Chem Phys; 2022 May; 24(17):10297-10304. PubMed ID: 35437535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hot wire chemical vapor deposition chemistry in the gas phase and on the catalyst surface with organosilicon compounds.
    Shi Y
    Acc Chem Res; 2015 Feb; 48(2):163-73. PubMed ID: 25586211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-temperature growth and direct transfer of graphene-graphitic carbon films on flexible plastic substrates.
    Kim YJ; Kim SJ; Jung MH; Choi KY; Bae S; Lee SK; Lee Y; Shin D; Lee B; Shin H; Choi M; Park K; Ahn JH; Hong BH
    Nanotechnology; 2012 Aug; 23(34):344016. PubMed ID: 23057073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition.
    Zhan H; Garrett DJ; Apollo NV; Ganesan K; Lau D; Prawer S; Cervenka J
    Sci Rep; 2016 Jan; 6():19822. PubMed ID: 26805546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and Manipulation of Carbon Precursor Species during Plasma Enhanced Chemical Vapor Deposition of Graphene.
    Zietz O; Olson S; Coyne B; Liu Y; Jiao J
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33187078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparing a New Class of Ultrathin Graphene Nanostructure by Chemical Vapor Deposition and Its Lasing Ability.
    Dadkhah Tehrani A; Efafi B; Majles Ara MH
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46429-46438. PubMed ID: 32960562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Conductive Nitrogen-Doped Vertically Oriented Graphene toward Versatile Electrode-Related Applications.
    Cui L; Huan Y; Shan J; Liu B; Liu J; Xie H; Zhou F; Gao P; Zhang Y; Liu Z
    ACS Nano; 2020 Nov; 14(11):15327-15335. PubMed ID: 33180469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.