These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 30156836)
1. Selective Monitoring and Imaging of Eosinophil Peroxidase Activity with a J-Aggregating Probe. Kim TI; Hwang B; Lee B; Bae J; Kim Y J Am Chem Soc; 2018 Sep; 140(37):11771-11776. PubMed ID: 30156836 [TBL] [Abstract][Full Text] [Related]
2. Advances in organic fluorescent probes for bromide ions, hypobromous acid and related eosinophil peroxidase-A review. Zhang D; Yang X; Wang T; Ji X; Wu X Anal Chim Acta; 2023 Mar; 1244():340626. PubMed ID: 36737144 [TBL] [Abstract][Full Text] [Related]
3. Detection of the halogenating activity of heme peroxidases in leukocytes by aminophenyl fluorescein. Flemmig J; Remmler J; Zschaler J; Arnhold J Free Radic Res; 2015 Jun; 49(6):768-76. PubMed ID: 25536418 [TBL] [Abstract][Full Text] [Related]
4. Dansylglycine, a fluorescent probe for specific determination of halogenating activity of myeloperoxidase and eosinophil peroxidase. Bertozo LC; Zeraik ML; Ximenes VF Anal Biochem; 2017 Sep; 532():29-37. PubMed ID: 28587811 [TBL] [Abstract][Full Text] [Related]
5. Reactions of Methotrexate with Hypobromous Acid and Hypochlorous Acid. Suzuki T; Takeuchi R Chem Pharm Bull (Tokyo); 2019; 67(11):1250-1254. PubMed ID: 31685753 [TBL] [Abstract][Full Text] [Related]
6. The fluorescein-derived dye aminophenyl fluorescein is a suitable tool to detect hypobromous acid (HOBr)-producing activity in eosinophils. Flemmig J; Zschaler J; Remmler J; Arnhold J J Biol Chem; 2012 Aug; 287(33):27913-23. PubMed ID: 22718769 [TBL] [Abstract][Full Text] [Related]
7. An Ultrasensitive Cyclization-Based Fluorescent Probe for Imaging Native HOBr in Live Cells and Zebrafish. Xu K; Luan D; Wang X; Hu B; Liu X; Kong F; Tang B Angew Chem Int Ed Engl; 2016 Oct; 55(41):12751-4. PubMed ID: 27629766 [TBL] [Abstract][Full Text] [Related]
8. Development of reversible fluorescence probes based on redox oxoammonium cation for hypobromous acid detection in living cells. Yu F; Song P; Li P; Wang B; Han K Chem Commun (Camb); 2012 Aug; 48(62):7735-7. PubMed ID: 22735154 [TBL] [Abstract][Full Text] [Related]
9. Reactions of Rebamipide with Hypobromous Acid. Suzuki T; Okuyama A Chem Pharm Bull (Tokyo); 2019; 67(10):1164-1167. PubMed ID: 31582637 [TBL] [Abstract][Full Text] [Related]
10. A fast-response fluorescent probe for hypochlorous acid detection and its application in exogenous and endogenous HOCl imaging of living cells. Jiang Y; Zheng G; Cai N; Zhang H; Tan Y; Huang M; He Y; He J; Sun H Chem Commun (Camb); 2017 Nov; 53(91):12349-12352. PubMed ID: 29099129 [TBL] [Abstract][Full Text] [Related]
11. Responsive Fluorescence Probe for Selective and Sensitive Detection of Hypochlorous Acid in Live Cells and Animals. Feng H; Meng Q; Wang Y; Duan C; Wang C; Jia H; Zhang Z; Zhang R Chem Asian J; 2018 Sep; 13(18):2611-2618. PubMed ID: 29963750 [TBL] [Abstract][Full Text] [Related]
12. Hypochlorous acid turn-on fluorescent probe based on oxidation of diphenyl selenide. Liu SR; Wu SP Org Lett; 2013 Feb; 15(4):878-81. PubMed ID: 23373559 [TBL] [Abstract][Full Text] [Related]
13. A rhodamine B-based probe for the detection of HOCl in lysosomes. Shen SL; Huang XQ; Jiang HL; Lin XH; Cao XQ Anal Chim Acta; 2019 Jan; 1046():185-191. PubMed ID: 30482298 [TBL] [Abstract][Full Text] [Related]
14. A highly selective and sensitive photoinduced electron transfer (PET) based HOCl fluorescent probe in water and its endogenous imaging in living cells. Liang L; Liu C; Jiao X; Zhao L; Zeng X Chem Commun (Camb); 2016 Jun; 52(51):7982-5. PubMed ID: 27257635 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of an ultrasensitive BODIPY-derived fluorescent probe for detecting HOCl in live cells. Zhu H; Zhang Z; Long S; Du J; Fan J; Peng X Nat Protoc; 2018 Oct; 13(10):2348-2361. PubMed ID: 30250290 [TBL] [Abstract][Full Text] [Related]
16. Reversible two-photon fluorescent probe for imaging of hypochlorous acid in live cells and in vivo. Zhang W; Liu W; Li P; kang J; Wang J; Wang H; Tang B Chem Commun (Camb); 2015 Jun; 51(50):10150-3. PubMed ID: 26008174 [TBL] [Abstract][Full Text] [Related]
17. A highly selective turn-on fluorescent probe for hypochlorous acid based on hypochlorous acid-induced oxidative intramolecular cyclization of boron dipyrromethene-hydrazone. Chen WC; Venkatesan P; Wu SP Anal Chim Acta; 2015 Jul; 882():68-75. PubMed ID: 26043093 [TBL] [Abstract][Full Text] [Related]
18. HKOCl-2 series of green BODIPY-based fluorescent probes for hypochlorous acid detection and imaging in live cells. Hu JJ; Wong NK; Gu Q; Bai X; Ye S; Yang D Org Lett; 2014 Jul; 16(13):3544-7. PubMed ID: 24950390 [TBL] [Abstract][Full Text] [Related]
19. High-Quantum-Yield Mitochondria-Targeting Near-Infrared Fluorescent Probe for Imaging Native Hypobromous Acid in Living Cells and in Vivo. Liu X; Zheng A; Luan D; Wang X; Kong F; Tong L; Xu K; Tang B Anal Chem; 2017 Feb; 89(3):1787-1792. PubMed ID: 28059501 [TBL] [Abstract][Full Text] [Related]
20. Fluorescent Probes for Selective Recognition of Hypobromous Acid: Achievements and Future Perspectives. Fang Y; Dehaen W Molecules; 2021 Jan; 26(2):. PubMed ID: 33445736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]