These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 30156920)
1. Phycoremediation resultant lipid production and antioxidant changes in green microalgae Chlorella Sp. Ajayan KV; Harilal CC; Selvaraju M Int J Phytoremediation; 2018 Sep; 20(11):1144-1151. PubMed ID: 30156920 [TBL] [Abstract][Full Text] [Related]
2. Green microalgae for combined sewage and tannery effluent treatment: Performance and lipid accumulation potential. Saranya D; Shanthakumar S J Environ Manage; 2019 Jul; 241():167-178. PubMed ID: 30999266 [TBL] [Abstract][Full Text] [Related]
3. Heavy metal induced antioxidant defense system of green microalgae and its effective role in phycoremediation of tannery effluent. Ajayan KV; Selvaraju M Pak J Biol Sci; 2012 Nov; 15(22):1056-62. PubMed ID: 24261120 [TBL] [Abstract][Full Text] [Related]
4. Characterization of sorption sites and differential stress response of microalgae isolates against tannery effluents from ranipet industrial area-An application towards phycoremediation. Balaji S; Kalaivani T; Sushma B; Pillai CV; Shalini M; Rajasekaran C Int J Phytoremediation; 2016 Aug; 18(8):747-53. PubMed ID: 26587690 [TBL] [Abstract][Full Text] [Related]
5. Phycoremediation of municipal wastewater by microalgae to produce biofuel. Singh AK; Sharma N; Farooqi H; Abdin MZ; Mock T; Kumar S Int J Phytoremediation; 2017 Sep; 19(9):805-812. PubMed ID: 28156133 [TBL] [Abstract][Full Text] [Related]
6. Phycoremediation of wastewater for pollutant removal: A green approach to environmental protection and long-term remediation. Dayana Priyadharshini S; Suresh Babu P; Manikandan S; Subbaiya R; Govarthanan M; Karmegam N Environ Pollut; 2021 Dec; 290():117989. PubMed ID: 34433126 [TBL] [Abstract][Full Text] [Related]
7. Phycoremediation of Tannery Wastewater Using Microalgae Scenedesmus Species. Ajayan KV; Selvaraju M; Unnikannan P; Sruthi P Int J Phytoremediation; 2015; 17(10):907-16. PubMed ID: 25580934 [TBL] [Abstract][Full Text] [Related]
8. Performance assessment of biofuel production in an algae-based remediation system. Wuang SC; Luo YD; Wang S; Chua PQ; Tee PS J Biotechnol; 2016 Mar; 221():43-8. PubMed ID: 26808868 [TBL] [Abstract][Full Text] [Related]
10. Application of ANN-MOGA for nutrient sequestration for wastewater remediation and production of polyunsaturated fatty acid (PUFA) by Chlorella sorokiniana MSP1. Kalwani M; Kumari A; Rudra SG; Chhabra D; Pabbi S; Shukla P Chemosphere; 2024 Feb; 349():140835. PubMed ID: 38043617 [TBL] [Abstract][Full Text] [Related]
11. Effects of mixotrophic cultivation on antioxidation and lipid accumulation of Li R; Pan J; Yan M; Yang J; Qin W Int J Phytoremediation; 2020; 22(6):638-643. PubMed ID: 31847537 [TBL] [Abstract][Full Text] [Related]
12. Biofuel production and phycoremediation by Chlorella sp. ISTLA1 isolated from landfill site. Mishra A; Medhi K; Maheshwari N; Srivastava S; Thakur IS Bioresour Technol; 2018 Apr; 253():121-129. PubMed ID: 29335189 [TBL] [Abstract][Full Text] [Related]
13. Sensitivity of two green microalgae to copper stress: Growth, oxidative and antioxidants analyses. Hamed SM; Selim S; Klöck G; AbdElgawad H Ecotoxicol Environ Saf; 2017 Oct; 144():19-25. PubMed ID: 28599127 [TBL] [Abstract][Full Text] [Related]
14. Biotechnological Approaches for Biomass and Lipid Production Using Microalgae Je S; Yamaoka Y J Microbiol Biotechnol; 2022 Nov; 32(11):1357-1372. PubMed ID: 36310359 [TBL] [Abstract][Full Text] [Related]
15. Assessment of heavy metals and environmental stress conditions on the production potential of polyunsaturated fatty acids (PUFAs) in indigenous microalgae isolated from the Gulf of Mannar coastal waters. Kadam RV; Rani V; Padmavathy P; Shalini R; Selvi MJT; Narsale SA Environ Monit Assess; 2024 Feb; 196(3):301. PubMed ID: 38400851 [TBL] [Abstract][Full Text] [Related]
16. Effect of culture conditions on biomass yield of acclimatized microalgae in ozone pre-treated tannery effluent: A simultaneous exploration of bioremediation and lipid accumulation potential. Saranya D; Shanthakumar S J Environ Manage; 2020 Nov; 273():111129. PubMed ID: 32758913 [TBL] [Abstract][Full Text] [Related]
17. Use of mixed wastewaters from piggery and winery for nutrient removal and lipid production by Chlorella sp. MM3. Ganeshkumar V; Subashchandrabose SR; Dharmarajan R; Venkateswarlu K; Naidu R; Megharaj M Bioresour Technol; 2018 May; 256():254-258. PubMed ID: 29454276 [TBL] [Abstract][Full Text] [Related]
18. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Yang J; Cao J; Xing G; Yuan H Bioresour Technol; 2015 Jan; 175():537-44. PubMed ID: 25459865 [TBL] [Abstract][Full Text] [Related]
19. Efficient bioremediation of tannery wastewater by monostrains and consortium of marine Chlorella sp. and Phormidium sp. Das C; Ramaiah N; Pereira E; Naseera K Int J Phytoremediation; 2018 Feb; 20(3):284-292. PubMed ID: 29053344 [TBL] [Abstract][Full Text] [Related]
20. Bioremediation of zinc and manganese in swine wastewater by living microalgae: Performance, mechanism, and algal biomass utilization. Liu XY; Hong Y; Liang M; Zhai QY Bioresour Technol; 2023 Oct; 385():129382. PubMed ID: 37352991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]