BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30157110)

  • 1. Critical Velocity during Intermittent Running with Changes of Direction.
    Kirby BS; Bradley EM; Wilkins BW
    Med Sci Sports Exerc; 2019 Feb; 51(2):308-314. PubMed ID: 30157110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validity and reliability of a new field test (Carminatti's test) for soccer players compared with laboratory-based measures.
    Da Silva JF; Guglielmo LG; Carminatti LJ; De Oliveira FR; Dittrich N; Paton CD
    J Sports Sci; 2011 Dec; 29(15):1621-8. PubMed ID: 22098562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships and significance of lactate minimum, critical velocity, heart rate deflection and 3 000 m track-tests for running.
    Simões HG; Denadai BS; Baldissera V; Campbell CS; Hill DW
    J Sports Med Phys Fitness; 2005 Dec; 45(4):441-51. PubMed ID: 16446674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliability and validity of the soccer specific INTER field test.
    Aandstad A; Simon EV
    J Sports Sci; 2013; 31(13):1383-92. PubMed ID: 23768196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting intermittent running performance: critical velocity versus endurance index.
    Buchheit M; Laursen PB; Millet GP; Pactat F; Ahmaidi S
    Int J Sports Med; 2008 Apr; 29(4):307-15. PubMed ID: 17879881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated sprint ability in young basketball players: one vs. two changes of direction (Part 1).
    Padulo J; Laffaye G; Haddad M; Chaouachi A; Attene G; Migliaccio GM; Chamari K; Pizzolato F
    J Sports Sci; 2015; 33(14):1480-92. PubMed ID: 25530125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher Accuracy of the Lactate Minimum Test Compared to Established Threshold Concepts to Determine Maximal Lactate Steady State in Running.
    Wahl P; Zwingmann L; Manunzio C; Wolf J; Bloch W
    Int J Sports Med; 2018 Jul; 39(7):541-548. PubMed ID: 29775989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac autonomic responses to repeated shuttle sprints.
    Nakamura FY; Soares-Caldeira LF; Laursen PB; Polito MD; Leme LC; Buchheit M
    Int J Sports Med; 2009 Nov; 30(11):808-13. PubMed ID: 19685413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological and metabolic responses of female games and endurance athletes to prolonged, intermittent, high-intensity running at 30 degrees and 16 degrees C ambient temperatures.
    Morris JG; Nevill ME; Williams C
    Eur J Appl Physiol; 2000 Jan; 81(1-2):84-92. PubMed ID: 10552271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics of shuttle runs: the effects of distance and change of direction.
    Zamparo P; Zadro I; Lazzer S; Beato M; Sepulcri L
    Int J Sports Physiol Perform; 2014 Nov; 9(6):1033-9. PubMed ID: 24700201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yo-Yo Intermittent Recovery Level 1 Test for Estimation of Peak Oxygen Uptake: Use Without Restriction?
    Schmitz B; Pfeifer C; Thorwesten L; Krüger M; Klose A; Brand SM
    Res Q Exerc Sport; 2020 Sep; 91(3):478-487. PubMed ID: 32004114
    [No Abstract]   [Full Text] [Related]  

  • 12. The influence of a 6.5% carbohydrate-electrolyte solution on performance of prolonged intermittent high-intensity running at 30 degrees C.
    Morris JG; Nevill ME; Thompson D; Collie J; Williams C
    J Sports Sci; 2003 May; 21(5):371-81. PubMed ID: 12800859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Reliability of Running Performance in a 5 km Time Trial on a Non-motorized Treadmill.
    Stevens CJ; Hacene J; Sculley DV; Taylor L; Callister R; Dascombe B
    Int J Sports Med; 2015 Aug; 36(9):705-9. PubMed ID: 25790087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yo-Yo IR1 vs. incremental continuous running test for prediction of 3000-m performance.
    Schmitz B; Klose A; Schelleckes K; Jekat CM; Krüger M; Brand SM
    J Sports Med Phys Fitness; 2017 Nov; 57(11):1391-1398. PubMed ID: 28229568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-exhaustive test for aerobic capacity determination in running rats.
    Manchado-Gobatto FB; Gobatto CA; Contarteze RV; Mello MA
    Indian J Exp Biol; 2011 Oct; 49(10):781-5. PubMed ID: 22013745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vmax estimate from three-parameter critical velocity models: validity and impact on 800 m running performance prediction.
    Bosquet L; Duchene A; Lecot F; Dupont G; Leger L
    Eur J Appl Physiol; 2006 May; 97(1):34-42. PubMed ID: 16468059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Conconi test in not valid for estimation of the lactate turnpoint in runners.
    Jones AM; Doust JH
    J Sports Sci; 1997 Aug; 15(4):385-94. PubMed ID: 9293415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability and Validity of a New Portable Tethered Sprint Running Test as a Measure of Maximal Anaerobic Performance.
    Limmer M; Berkholz A; de Marées M; Platen P
    J Strength Cond Res; 2020 Aug; 34(8):2197-2204. PubMed ID: 30946262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of methods for estimating the lactate threshold.
    McGehee JC; Tanner CJ; Houmard JA
    J Strength Cond Res; 2005 Aug; 19(3):553-8. PubMed ID: 16095403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between critical velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners.
    Smith CG; Jones AM
    Eur J Appl Physiol; 2001 Jul; 85(1-2):19-26. PubMed ID: 11513315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.