BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30157169)

  • 1. New methods for computational decomposition of whole-mount in situ images enable effective curation of a large, highly redundant collection of Xenopus images.
    Patrushev I; James-Zorn C; Ciau-Uitz A; Patient R; Gilchrist MJ
    PLoS Comput Biol; 2018 Aug; 14(8):e1006077. PubMed ID: 30157169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization of Gene Expression Patterns by In Situ Hybridization on Early Stages of Development of Xenopus laevis.
    El-Hodiri HM; Kelly LE
    Methods Mol Biol; 2018; 1797():325-335. PubMed ID: 29896701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic image analysis for gene expression patterns of fly embryos.
    Peng H; Long F; Zhou J; Leung G; Eisen MB; Myers EW
    BMC Cell Biol; 2007 Jul; 8 Suppl 1(Suppl 1):S7. PubMed ID: 17634097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated annotation of developmental stages of Drosophila embryos in images containing spatial patterns of expression.
    Yuan L; Pan C; Ji S; McCutchan M; Zhou ZH; Newfeld SJ; Kumar S; Ye J
    Bioinformatics; 2014 Jan; 30(2):266-73. PubMed ID: 24300439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Medium-throughput processing of whole mount in situ hybridisation experiments into gene expression domains.
    Crombach A; Cicin-Sain D; Wotton KR; Jaeger J
    PLoS One; 2012; 7(9):e46658. PubMed ID: 23029561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental Expression of Ectonucleotidase and Purinergic Receptors Detection by Whole-Mount In Situ Hybridization in Xenopus Embryos.
    Blanchard C; Massé K
    Methods Mol Biol; 2020; 2041():87-106. PubMed ID: 31646482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GINI: from ISH images to gene interaction networks.
    Puniyani K; Xing EP
    PLoS Comput Biol; 2013; 9(10):e1003227. PubMed ID: 24130465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of Drosophila embryonic developmental stage range based on gene expression pattern images.
    Ye J; Chen J; Li Q; Kumar S
    Comput Syst Bioinformatics Conf; 2006; ():293-8. PubMed ID: 17369647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new triple staining method for double in situ hybridization in combination with cell lineage tracing in whole-mount Xenopus embryos.
    Koga M; Kudoh T; Hamada Y; Watanabe M; Kageura H
    Dev Growth Differ; 2007 Oct; 49(8):635-45. PubMed ID: 17711476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A protocol for whole-mount immuno-coupled hybridization chain reaction (WICHCR) in zebrafish embryos and larvae.
    Ibarra-García-Padilla R; Howard AGA; Singleton EW; Uribe RA
    STAR Protoc; 2021 Sep; 2(3):100709. PubMed ID: 34401776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SPEX2: automated concise extraction of spatial gene expression patterns from Fly embryo ISH images.
    Puniyani K; Faloutsos C; Xing EP
    Bioinformatics; 2010 Jun; 26(12):i47-56. PubMed ID: 20529936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-Mount In Situ Hybridization of
    Bauermeister D; Pieler T
    Cold Spring Harb Protoc; 2018 Mar; 2018(3):. PubMed ID: 29496817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FlyIT: Drosophila Embryogenesis Image Annotation based on Image Tiling and Convolutional Neural Networks.
    Long W; Li T; Yang Y; Shen HB
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):194-204. PubMed ID: 31425122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-Mount In Situ Hybridization of
    Saint-Jeannet JP
    Cold Spring Harb Protoc; 2017 Dec; 2017(12):pdb.prot097287. PubMed ID: 29084864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput whole mount in situ hybridization of zebrafish embryos for analysis of tissue-specific gene expression changes after environmental perturbation.
    Coverdale LE; Burton LE; Martin CC
    Methods Mol Biol; 2008; 410():3-14. PubMed ID: 18642591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint stage recognition and anatomical annotation of Drosophila gene expression patterns.
    Cai X; Wang H; Huang H; Ding C
    Bioinformatics; 2012 Jun; 28(12):i16-24. PubMed ID: 22689756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pancreatic protein disulfide isomerase (XPDIp) is an early marker for the exocrine lineage of the developing pancreas in Xenopus laevis embryos.
    Afelik S; Chen Y; Pieler T
    Gene Expr Patterns; 2004 Jan; 4(1):71-6. PubMed ID: 14678831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium dodecyl sulfate (SDS)-based whole-mount in situ hybridization of Xenopus laevis embryos.
    Shain DH; Zuber MX
    J Biochem Biophys Methods; 1996 Feb; 31(3-4):185-8. PubMed ID: 8675961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of gene expression in embryonic structures of Drosophila melanogaster.
    Samsonova AA; Niranjan M; Russell S; Brazma A
    PLoS Comput Biol; 2007 Jul; 3(7):e144. PubMed ID: 17658945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The developmental expression of two Xenopus laevis steel homologues, Xsl-1 and Xsl-2.
    Martin BL; Harland RM
    Gene Expr Patterns; 2004 Dec; 5(2):239-43. PubMed ID: 15567720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.