BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 30157443)

  • 1. Asparaginase conjugated magnetic nanoparticles used for reducing acrylamide formation in food model system.
    Alam S; Ahmad R; Pranaw K; Mishra P; Khare SK
    Bioresour Technol; 2018 Dec; 269():121-126. PubMed ID: 30157443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of asparaginase to reduce acrylamide levels in cooked food.
    Xu F; Oruna-Concha MJ; Elmore JS
    Food Chem; 2016 Nov; 210():163-71. PubMed ID: 27211635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of L-asparaginase on magnetic nanoparticles: Kinetics and functional characterization and applications.
    Alam S; Nagpal T; Singhal R; Kumar Khare S
    Bioresour Technol; 2021 Nov; 339():125599. PubMed ID: 34303095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of L-asparaginase on acrylamide mitigation in a fried-dough pastry model.
    Kukurová K; Morales FJ; Bednáriková A; Ciesarová Z
    Mol Nutr Food Res; 2009 Dec; 53(12):1532-9. PubMed ID: 19824015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent Immobilization of L-Asparaginase and Optimization of Its Enzyme Reactor for Reducing Acrylamide Formation in a Heated Food Model System.
    Li R; Zhang Z; Pei X; Xia X
    Front Bioeng Biotechnol; 2020; 8():584758. PubMed ID: 33178677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of additives on acrylamide formation in food products: a systematic review.
    Abedini AH; Vakili Saatloo N; Salimi M; Sadighara P; Alizadeh Sani M; Garcia-Oliviera P; Prieto MA; Kharazmi MS; Jafari SM
    Crit Rev Food Sci Nutr; 2024; 64(10):2773-2793. PubMed ID: 36194060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient control of acrylamide in French fries by an extraordinarily active and thermo-stable l-asparaginase: A lab-scale study.
    Wang Y; Wu H; Zhang W; Xu W; Mu W
    Food Chem; 2021 Oct; 360():130046. PubMed ID: 34023713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The functional properties of chitosan-glucose-asparagine Maillard reaction products and mitigation of acrylamide formation by chitosans.
    Sung WC; Chang YW; Chou YH; Hsiao HI
    Food Chem; 2018 Mar; 243():141-144. PubMed ID: 29146320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of acrylamide level through blanching with treatment by an extremely thermostable L-asparaginase during French fries processing.
    Zuo S; Zhang T; Jiang B; Mu W
    Extremophiles; 2015 Jul; 19(4):841-51. PubMed ID: 26077968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antitumor activity and ability to prevent acrylamide formation in fried foods of asparaginase from soybean root nodules.
    Liu C; Luo L; Lin Q
    J Food Biochem; 2019 Mar; 43(3):e12756. PubMed ID: 31353561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current issues in dietary acrylamide: formation, mitigation and risk assessment.
    Pedreschi F; Mariotti MS; Granby K
    J Sci Food Agric; 2014 Jan; 94(1):9-20. PubMed ID: 23939985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a novel and glutaminase-free type II L-asparaginase from Corynebacterium glutamicum and its acrylamide alleviation efficiency in potato chips.
    Chi H; Xia B; Shen J; Zhu X; Lu Z; Lu F; Zhu P
    Int J Biol Macromol; 2022 Nov; 221():1384-1393. PubMed ID: 36130640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel bacterial type II l-asparaginase and evaluation of its enzymatic acrylamide reduction in French fries.
    Sun Z; Qin R; Li D; Ji K; Wang T; Cui Z; Huang Y
    Int J Biol Macromol; 2016 Nov; 92():232-239. PubMed ID: 27402458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a novel type I l-asparaginase from Acinetobacter soli and its ability to inhibit acrylamide formation in potato chips.
    Jiao L; Chi H; Lu Z; Zhang C; Chia SR; Show PL; Tao Y; Lu F
    J Biosci Bioeng; 2020 Jun; 129(6):672-678. PubMed ID: 32088137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the potential for enzymatic acrylamide mitigation in a range of food products using an asparaginase from Aspergillus oryzae.
    Hendriksen HV; Kornbrust BA; Østergaard PR; Stringer MA
    J Agric Food Chem; 2009 May; 57(10):4168-76. PubMed ID: 19388639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of L-asparaginase from Streptomyces koyangensis SK4 with acrylamide-minimizing potential in potato chips.
    Shahana Kabeer S; Francis B; Vishnupriya S; Kattatheyil H; Joseph KJ; Krishnan KP; Mohamed Hatha AA
    Braz J Microbiol; 2023 Sep; 54(3):1645-1654. PubMed ID: 37036659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective treatment for suppression of acrylamide formation in fried potato chips using L-asparaginase from Bacillus subtilis.
    Onishi Y; Prihanto AA; Yano S; Takagi K; Umekawa M; Wakayama M
    3 Biotech; 2015 Oct; 5(5):783-789. PubMed ID: 28324531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness of asparaginase on reducing acrylamide formation in bakery products according to their dough type and properties.
    Gazi S; Göncüoğlu Taş N; Görgülü A; Gökmen V
    Food Chem; 2023 Feb; 402():134224. PubMed ID: 36126579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acrylamide is formed in the Maillard reaction.
    Mottram DS; Wedzicha BL; Dodson AT
    Nature; 2002 Oct; 419(6906):448-9. PubMed ID: 12368844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acrylamide Mitigation in Fried Kochchi Kesel Chips Using Free and Immobilized Fungal Asparaginase.
    Ravi A; Gurunathan B
    Food Technol Biotechnol; 2018 Mar; 56(1):51-57. PubMed ID: 29795996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.