These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 30157445)

  • 1. Research on moldy tea feature classification based on WKNN algorithm and NIR hyperspectral imaging.
    Xin Z; Jun S; Xiaohong W; Bing L; Ning Y; Chunxia D
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():378-383. PubMed ID: 30157445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Identification of varieties of black bean using ground based hyperspectral imaging].
    Zhang C; Liu F; Zhang HL; Kong WW; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Mar; 34(3):746-50. PubMed ID: 25208405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research and analysis of cadmium residue in tomato leaves based on WT-LSSVR and Vis-NIR hyperspectral imaging.
    Jun S; Xin Z; Xiaohong W; Bing L; Chunxia D; Jifeng S
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 212():215-221. PubMed ID: 30641361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep learning method for predicting lead content in oilseed rape leaves using fluorescence hyperspectral imaging.
    Zhou X; Zhao C; Sun J; Cao Y; Yao K; Xu M
    Food Chem; 2023 May; 409():135251. PubMed ID: 36586261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cognitive spectroscopy for evaluating Chinese black tea grades (Camellia sinensis): near-infrared spectroscopy and evolutionary algorithms.
    Ren G; Sun Y; Li M; Ning J; Zhang Z
    J Sci Food Agric; 2020 Aug; 100(10):3950-3959. PubMed ID: 32329077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of moisture content in tobacco plant leaves using outlier sample eliminating algorithms and hyperspectral data.
    Sun J; Zhou X; Wu X; Zhang X; Li Q
    Biochem Biophys Res Commun; 2016 Feb; 471(1):226-32. PubMed ID: 26809097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Color measurement of tea leaves at different drying periods using hyperspectral imaging technique.
    Xie C; Li X; Shao Y; He Y
    PLoS One; 2014; 9(12):e113422. PubMed ID: 25546335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Determination of Soluble Solid Content in Strawberry Using Hyperspectral Imaging Combined with Feature Extraction Methods].
    Ding XB; Zhang C; Liu F; Song XL; Kong WW; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Apr; 35(4):1020-4. PubMed ID: 26197594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of Aflatoxin B1 Concentration of Single Maize Kernel Based on Near-Infrared Hyperspectral Imaging and Feature Selection.
    Zhou Q; Huang W; Liang D; Tian X
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Dianhong black tea quality using near-infrared hyperspectral imaging technology.
    Ren G; Wang Y; Ning J; Zhang Z
    J Sci Food Agric; 2021 Mar; 101(5):2135-2142. PubMed ID: 32981110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [State Recognition of Solid Fermentation Process Based on Near Infrared Spectroscopy with Adaboost and Spectral Regression Discriminant Analysis].
    Yu S; Liu GH; Xia RS; Jiang H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):51-4. PubMed ID: 27228739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of
    Kong W; Zhang C; Cao F; Liu F; Luo S; Tang Y; He Y
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29857572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nondestructive testing and visualization of compound heavy metals in lettuce leaves using fluorescence hyperspectral imaging.
    Zhou X; Zhao C; Sun J; Yao K; Xu M; Cheng J
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 291():122337. PubMed ID: 36680832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cucumber powdery mildew detection method based on hyperspectra-terahertz.
    Zhang X; Wang P; Wang Y; Hu L; Luo X; Mao H; Shen B
    Front Plant Sci; 2022; 13():1035731. PubMed ID: 36247642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variety Identification of Raisins Using Near-Infrared Hyperspectral Imaging.
    Feng L; Zhu S; Zhang C; Bao Y; Gao P; He Y
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30412997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Oil Chestnuts Infected by Blue Mold Using Near-Infrared Hyperspectral Imaging Combined with Artificial Neural Networks.
    Feng L; Zhu S; Lin F; Su Z; Yuan K; Zhao Y; He Y; Zhang C
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29914074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared hyperspectral imaging in tandem with partial least squares regression and genetic algorithm for non-destructive determination and visualization of Pseudomonas loads in chicken fillets.
    Feng YZ; Sun DW
    Talanta; 2013 May; 109():74-83. PubMed ID: 23618142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of coffee bean varieties using hyperspectral imaging: influence of preprocessing methods and pixel-wise spectra analysis.
    Zhang C; Liu F; He Y
    Sci Rep; 2018 Feb; 8(1):2166. PubMed ID: 29391427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of different varieties of sesame oil using near-infrared hyperspectral imaging and chemometrics algorithms.
    Xie C; Wang Q; He Y
    PLoS One; 2014; 9(5):e98522. PubMed ID: 24879306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-variable selection strategy based on near-infrared spectra for the rapid description of dianhong black tea quality.
    Ren G; Ning J; Zhang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118918. PubMed ID: 32942112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.