These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30157641)

  • 1. A Single-Component Optogenetic System Allows Stringent Switch of Gene Expression in Yeast Cells.
    Xu X; Du Z; Liu R; Li T; Zhao Y; Chen X; Yang Y
    ACS Synth Biol; 2018 Sep; 7(9):2045-2053. PubMed ID: 30157641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Single-Component Optogenetic Gal4-UAS System Allows Stringent Control of Gene Expression in Zebrafish and Drosophila.
    Qian Y; Li T; Zhou S; Chen X; Yang Y
    ACS Synth Biol; 2023 Mar; 12(3):664-671. PubMed ID: 36891673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic dual-input mammalian genetic circuits enable tunable and stringent transcription control by chemical and light.
    Chen X; Li T; Wang X; Du Z; Liu R; Yang Y
    Nucleic Acids Res; 2016 Apr; 44(6):2677-90. PubMed ID: 26673714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic Downregulation of Protein Levels with an Ultrasensitive Switch.
    Hasenjäger S; Trauth J; Hepp S; Goenrich J; Essen LO; Taxis C
    ACS Synth Biol; 2019 May; 8(5):1026-1036. PubMed ID: 30955324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single-component light sensor system allows highly tunable and direct activation of gene expression in bacterial cells.
    Li X; Zhang C; Xu X; Miao J; Yao J; Liu R; Zhao Y; Chen X; Yang Y
    Nucleic Acids Res; 2020 Apr; 48(6):e33. PubMed ID: 31989175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance.
    Gerth U; Krüger E; Derré I; Msadek T; Hecker M
    Mol Microbiol; 1998 May; 28(4):787-802. PubMed ID: 9643546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease.
    Wah DA; Levchenko I; Rieckhof GE; Bolon DN; Baker TA; Sauer RT
    Mol Cell; 2003 Aug; 12(2):355-63. PubMed ID: 14536075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review of Fluorescent Proteins for Use in Yeast.
    Bialecka-Fornal M; Makushok T; Rafelski SM
    Methods Mol Biol; 2016; 1369():309-46. PubMed ID: 26519321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ClpX and ClpP are essential for the efficient acquisition of genes specifying type IA and IB restriction systems.
    Makovets S; Titheradge AJ; Murray NE
    Mol Microbiol; 1998 Apr; 28(1):25-35. PubMed ID: 9593294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis.
    Flynn JM; Levchenko I; Seidel M; Wickner SH; Sauer RT; Baker TA
    Proc Natl Acad Sci U S A; 2001 Sep; 98(19):10584-9. PubMed ID: 11535833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic switches for light-controlled gene expression in yeast.
    Salinas F; Rojas V; Delgado V; Agosin E; Larrondo LF
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2629-2640. PubMed ID: 28210796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted delivery of an ssrA-tagged substrate by the adaptor protein SspB to its cognate AAA+ protein ClpX.
    Dougan DA; Weber-Ban E; Bukau B
    Mol Cell; 2003 Aug; 12(2):373-80. PubMed ID: 14536077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine.
    Kim YI; Burton RE; Burton BM; Sauer RT; Baker TA
    Mol Cell; 2000 Apr; 5(4):639-48. PubMed ID: 10882100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SspB delivery of substrates for ClpXP proteolysis probed by the design of improved degradation tags.
    Hersch GL; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12136-41. PubMed ID: 15297609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A light-switchable bidirectional expression module allowing simultaneous regulation of multiple genes.
    Chen X; Li T; Wang X; Yang Y
    Biochem Biophys Res Commun; 2015 Oct; 465(4):769-76. PubMed ID: 26301633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering an E. coli Near-Infrared Light Sensor.
    Ong NT; Olson EJ; Tabor JJ
    ACS Synth Biol; 2018 Jan; 7(1):240-248. PubMed ID: 29091422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations conferring amino acid residue substitutions in the carboxy-terminal domain of RNA polymerase alpha can suppress clpX and clpP with respect to developmentally regulated transcription in Bacillus subtilis.
    Nakano MM; Zhu Y; Liu J; Reyes DY; Yoshikawa H; Zuber P
    Mol Microbiol; 2000 Aug; 37(4):869-84. PubMed ID: 10972808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of evolutionary stability dynamics and competitive fitness of Escherichia coli engineered with randomized multigene circuits.
    Sleight SC; Sauro HM
    ACS Synth Biol; 2013 Sep; 2(9):519-28. PubMed ID: 24004180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bringing Light into Cell-Free Expression.
    Zhang P; Yang J; Cho E; Lu Y
    ACS Synth Biol; 2020 Aug; 9(8):2144-2153. PubMed ID: 32603590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical control of biological processes by light-switchable proteins.
    Fan LZ; Lin MZ
    Wiley Interdiscip Rev Dev Biol; 2015; 4(5):545-54. PubMed ID: 25858669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.