BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 30157718)

  • 1. The roles of mechanotransduction, vascular wall cells, and blood cells in atheroma induction.
    Novikova OA; Laktionov PP; Karpenko AA
    Vascular; 2019 Feb; 27(1):98-109. PubMed ID: 30157718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms Underlying Atheroma Induction: The Roles of Mechanotransduction, Vascular Wall Cells, and Blood Cells.
    Novikova OA; Laktionov PP; Karpenko AA
    Ann Vasc Surg; 2018 Nov; 53():224-233. PubMed ID: 30012457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potent Vasoconstrictor Kisspeptin-10 Induces Atherosclerotic Plaque Progression and Instability: Reversal by its Receptor GPR54 Antagonist.
    Sato K; Shirai R; Hontani M; Shinooka R; Hasegawa A; Kichise T; Yamashita T; Yoshizawa H; Watanabe R; Matsuyama TA; Ishibashi-Ueda H; Koba S; Kobayashi Y; Hirano T; Watanabe T
    J Am Heart Assoc; 2017 Apr; 6(4):. PubMed ID: 28411243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular distribution and interaction between extended renin-angiotensin-aldosterone system pathways in atheroma.
    Nehme A; Zibara K
    Atherosclerosis; 2017 Aug; 263():334-342. PubMed ID: 28600074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive Oxygen Species Generation and Atherosclerosis.
    Nowak WN; Deng J; Ruan XZ; Xu Q
    Arterioscler Thromb Vasc Biol; 2017 May; 37(5):e41-e52. PubMed ID: 28446473
    [No Abstract]   [Full Text] [Related]  

  • 6. Molecular and functional interactions among monocytes/macrophages and smooth muscle cells and their relevance for atherosclerosis.
    Butoi E; Gan AM; Manduteanu I
    Crit Rev Eukaryot Gene Expr; 2014; 24(4):341-55. PubMed ID: 25403963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of the kisspeptin/GPR54 system in pathomechanisms of atherosclerosis.
    Watanabe T; Sato K
    Nutr Metab Cardiovasc Dis; 2020 Jun; 30(6):889-895. PubMed ID: 32409274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosstalk between macrophages and smooth muscle cells in atherosclerotic vascular diseases.
    Koga J; Aikawa M
    Vascul Pharmacol; 2012 Aug; 57(1):24-8. PubMed ID: 22402259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelial Cell-Specific Deletion of P2Y2 Receptor Promotes Plaque Stability in Atherosclerosis-Susceptible ApoE-Null Mice.
    Chen X; Qian S; Hoggatt A; Tang H; Hacker TA; Obukhov AG; Herring PB; Seye CI
    Arterioscler Thromb Vasc Biol; 2017 Jan; 37(1):75-83. PubMed ID: 27856454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-126, -145, and -155: a therapeutic triad in atherosclerosis?
    Wei Y; Nazari-Jahantigh M; Neth P; Weber C; Schober A
    Arterioscler Thromb Vasc Biol; 2013 Mar; 33(3):449-54. PubMed ID: 23324496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunostaining of Macrophages, Endothelial Cells, and Smooth Muscle Cells in the Atherosclerotic Mouse Aorta.
    Menon P; Fisher EA
    Methods Mol Biol; 2015; 1339():131-48. PubMed ID: 26445786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of endothelial cell-derived angptl2 in vascular inflammation leading to endothelial dysfunction and atherosclerosis progression.
    Horio E; Kadomatsu T; Miyata K; Arai Y; Hosokawa K; Doi Y; Ninomiya T; Horiguchi H; Endo M; Tabata M; Tazume H; Tian Z; Takahashi O; Terada K; Takeya M; Hao H; Hirose N; Minami T; Suda T; Kiyohara Y; Ogawa H; Kaikita K; Oike Y
    Arterioscler Thromb Vasc Biol; 2014 Apr; 34(4):790-800. PubMed ID: 24526691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1.
    Zhang L; Cheng H; Yue Y; Li S; Zhang D; He R
    Cardiovasc Pathol; 2018; 33():6-15. PubMed ID: 29268138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel in vitro model for the study of plaque development in atherosclerosis.
    Dorweiler B; Torzewski M; Dahm M; Ochsenhirt V; Lehr HA; Lackner KJ; Vahl CF
    Thromb Haemost; 2006 Jan; 95(1):182-9. PubMed ID: 16543978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atherosclerosis: Insights into Vascular Pathobiology and Outlook to Novel Treatments.
    Wolf MP; Hunziker P
    J Cardiovasc Transl Res; 2020 Oct; 13(5):744-757. PubMed ID: 32072564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EphA2 Expression Regulates Inflammation and Fibroproliferative Remodeling in Atherosclerosis.
    Finney AC; Funk SD; Green JM; Yurdagul A; Rana MA; Pistorius R; Henry M; Yurochko A; Pattillo CB; Traylor JG; Chen J; Woolard MD; Kevil CG; Orr AW
    Circulation; 2017 Aug; 136(6):566-582. PubMed ID: 28487392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-talk between macrophages and smooth muscle cells impairs collagen and metalloprotease synthesis and promotes angiogenesis.
    Butoi E; Gan AM; Tucureanu MM; Stan D; Macarie RD; Constantinescu C; Calin M; Simionescu M; Manduteanu I
    Biochim Biophys Acta; 2016 Jul; 1863(7 Pt A):1568-78. PubMed ID: 27060293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated Neuropeptide Y in Endothelial Dysfunction Promotes Macrophage Infiltration and Smooth Muscle Foam Cell Formation.
    Choi B; Shin MK; Kim EY; Park JE; Lee H; Kim SW; Song JK; Chang EJ
    Front Immunol; 2019; 10():1701. PubMed ID: 31379881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis.
    Feil S; Fehrenbacher B; Lukowski R; Essmann F; Schulze-Osthoff K; Schaller M; Feil R
    Circ Res; 2014 Sep; 115(7):662-7. PubMed ID: 25070003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent insights into the cellular biology of atherosclerosis.
    Tabas I; García-Cardeña G; Owens GK
    J Cell Biol; 2015 Apr; 209(1):13-22. PubMed ID: 25869663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.