These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Langevin picture of anomalous diffusion processes in expanding medium. Wang X; Chen Y Phys Rev E; 2023 Feb; 107(2-1):024105. PubMed ID: 36932587 [TBL] [Abstract][Full Text] [Related]
5. Anomalous transport in the crowded world of biological cells. Höfling F; Franosch T Rep Prog Phys; 2013 Apr; 76(4):046602. PubMed ID: 23481518 [TBL] [Abstract][Full Text] [Related]
7. Elucidating the origin of anomalous diffusion in crowded fluids. Szymanski J; Weiss M Phys Rev Lett; 2009 Jul; 103(3):038102. PubMed ID: 19659323 [TBL] [Abstract][Full Text] [Related]
8. A Novel Fractional Brownian Dynamics Method for Simulating the Dynamics of Confined Bottle-Brush Polymers in Viscoelastic Solution. Yu S; Chu R; Wu G; Meng X Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399901 [TBL] [Abstract][Full Text] [Related]
9. A Novel Physical Mechanism to Model Brownian Yet Non-Gaussian Diffusion: Theory and Application. Alban-Chacón FE; Lamilla-Rubio EA; Alvarez-Alvarado MS Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079190 [TBL] [Abstract][Full Text] [Related]
10. Lévy-walk-like Langevin dynamics with random parameters. Chen Y; Wang X; Ge M Chaos; 2024 Jan; 34(1):. PubMed ID: 38198676 [TBL] [Abstract][Full Text] [Related]
11. Can anomalous diffusion models in magnetic resonance imaging be used to characterise white matter tissue microstructure? Yu Q; Reutens D; Vegh V Neuroimage; 2018 Jul; 175():122-137. PubMed ID: 29609006 [TBL] [Abstract][Full Text] [Related]
12. Non-Linear Langevin and Fractional Fokker-Planck Equations for Anomalous Diffusion by Lévy Stable Processes. Anderson J; Moradi S; Rafiq T Entropy (Basel); 2018 Oct; 20(10):. PubMed ID: 33265849 [TBL] [Abstract][Full Text] [Related]
13. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise. Wang W; Cherstvy AG; Liu X; Metzler R Phys Rev E; 2020 Jul; 102(1-1):012146. PubMed ID: 32794926 [TBL] [Abstract][Full Text] [Related]
14. Random death process for the regularization of subdiffusive fractional equations. Fedotov S; Falconer S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052139. PubMed ID: 23767519 [TBL] [Abstract][Full Text] [Related]
15. Ergodicity convergence test suggests telomere motion obeys fractional dynamics. Kepten E; Bronshtein I; Garini Y Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041919. PubMed ID: 21599212 [TBL] [Abstract][Full Text] [Related]
16. Langevin picture of subdiffusion in nonuniformly expanding medium. Chen Y; Wang X; Wang W Chaos; 2023 Nov; 33(11):. PubMed ID: 38029759 [TBL] [Abstract][Full Text] [Related]
17. Transient aging in fractional Brownian and Langevin-equation motion. Kursawe J; Schulz J; Metzler R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062124. PubMed ID: 24483403 [TBL] [Abstract][Full Text] [Related]
18. Langevin formulation of a subdiffusive continuous-time random walk in physical time. Cairoli A; Baule A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012102. PubMed ID: 26274120 [TBL] [Abstract][Full Text] [Related]
19. Brownian motion in inhomogeneous suspensions. Yang M; Ripoll M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062110. PubMed ID: 23848630 [TBL] [Abstract][Full Text] [Related]
20. Langevin equation approach to diffusion magnetic resonance imaging. Cooke JM; Kalmykov YP; Coffey WT; Kerskens CM Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061102. PubMed ID: 20365113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]