These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30158182)

  • 21. Entropic stochastic resonance enables trapping under periodic confinement: a Brownian-dynamics study.
    Shi N; Ugaz VM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012138. PubMed ID: 24580203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relativistic Brownian motion: from a microscopic binary collision model to the Langevin equation.
    Dunkel J; Hänggi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051106. PubMed ID: 17279876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anomalous diffusion as modeled by a nonstationary extension of Brownian motion.
    Cushman JH; O'Malley D; Park M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):032101. PubMed ID: 19391995
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamics of swelling/contracting hard spheres surmised by an irreversible Langevin equation.
    Popov AV; Melvin J; Hernandez R
    J Phys Chem A; 2006 Feb; 110(4):1635-44. PubMed ID: 16435826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inequivalence of time and ensemble averages in ergodic systems: exponential versus power-law relaxation in confinement.
    Jeon JH; Metzler R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021147. PubMed ID: 22463192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Langevin description of superdiffusive Lévy processes.
    Eule S; Zaburdaev V; Friedrich R; Geisel T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041134. PubMed ID: 23214556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models.
    Wang W; Metzler R; Cherstvy AG
    Phys Chem Chem Phys; 2022 Aug; 24(31):18482-18504. PubMed ID: 35838015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Communication: A scaling approach to anomalous diffusion.
    Kneller GR
    J Chem Phys; 2014 Jul; 141(4):041105. PubMed ID: 25084871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microscopic dynamics underlying anomalous diffusion.
    Kaniadakis G; Lapenta G
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt A):3246-9. PubMed ID: 11088820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes.
    Berry H; Chaté H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022708. PubMed ID: 25353510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries.
    Jeon JH; Metzler R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021103. PubMed ID: 20365526
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diffusive motion with nonlinear friction: apparently Brownian.
    Goohpattader PS; Chaudhury MK
    J Chem Phys; 2010 Jul; 133(2):024702. PubMed ID: 20632765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Entropy production of a Brownian ellipsoid in the overdamped limit.
    Marino R; Eichhorn R; Aurell E
    Phys Rev E; 2016 Jan; 93(1):012132. PubMed ID: 26871049
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anomalous diffusion of phospholipids and cholesterols in a lipid bilayer and its origins.
    Jeon JH; Monne HM; Javanainen M; Metzler R
    Phys Rev Lett; 2012 Nov; 109(18):188103. PubMed ID: 23215336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Path integrals for fractional Brownian motion and fractional Gaussian noise.
    Meerson B; Bénichou O; Oshanin G
    Phys Rev E; 2022 Dec; 106(6):L062102. PubMed ID: 36671110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intermediate dynamics between Newton and Langevin.
    Bao JD; Zhuo YZ; Oliveira FA; Hänggi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061111. PubMed ID: 17280042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitions.
    Balcerek M; Burnecki K; Thapa S; Wyłomańska A; Chechkin A
    Chaos; 2022 Sep; 32(9):093114. PubMed ID: 36182362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Memory effects for a stochastic fractional oscillator in a magnetic field.
    Mankin R; Laas K; Laas T; Paekivi S
    Phys Rev E; 2018 Jan; 97(1-1):012145. PubMed ID: 29448378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isothermal Langevin dynamics in systems with power-law spatially dependent friction.
    Regev S; Grønbech-Jensen N; Farago O
    Phys Rev E; 2016 Jul; 94(1-1):012116. PubMed ID: 27575086
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of a stochastic friction coefficient in open channel noise.
    Colmenares PJ
    J Theor Biol; 1993 Mar; 161(2):175-98. PubMed ID: 7687316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.