These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30158311)

  • 21. Within-season movements of Alpine songbird distributions are driven by fine-scale environmental characteristics.
    Ceresa F; Brambilla M; Monrós JS; Rizzolli F; Kranebitter P
    Sci Rep; 2020 Apr; 10(1):5747. PubMed ID: 32238868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Avian fitness consequences match habitat selection at the nest-site and landscape scale in agriculturally fragmented landscapes.
    Reiley BM; Benson TJ
    Ecol Evol; 2019 Jun; 9(12):7173-7183. PubMed ID: 31380041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Does reduced mobility through fragmented landscapes explain patch extinction patterns for three honeyeaters?
    Harrisson KA; Pavlova A; Amos JN; Radford JQ; Sunnucks P
    J Anim Ecol; 2014 May; 83(3):616-27. PubMed ID: 24164148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Habitat detection, habitat choice copying or mating benefits: What drives conspecific attraction in a nomadic songbird?
    Luepold SB; Kokko H; Grendelmeier A; Pasinelli G
    J Anim Ecol; 2023 Jan; 92(1):195-206. PubMed ID: 36377920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Competitor phenology as a social cue in breeding site selection.
    Samplonius JM; Both C
    J Anim Ecol; 2017 May; 86(3):615-623. PubMed ID: 28118482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patch and landscape effects on forest-dependent dung beetles are masked by matrix-tolerant dung beetles in a mountaintop rainforest archipelago.
    da Silva PG; Nunes CA; Ferreira LF; Braga RF; Beiroz W; Perillo LN; Solar RRC; de Siqueira Neves F
    Sci Total Environ; 2019 Feb; 651(Pt 1):1321-1331. PubMed ID: 30360264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mapping the Relative Probability of Common Toad Occurrence in Terrestrial Lowland Farm Habitat in the United Kingdom.
    Salazar RD; Montgomery RA; Thresher SE; Macdonald DW
    PLoS One; 2016; 11(2):e0148269. PubMed ID: 26841108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial contagion of predation risk affects colonization dynamics in experimental aquatic landscapes.
    Resetarits WJ; Binckley CA
    Ecology; 2009 Apr; 90(4):869-76. PubMed ID: 19449679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Are bird song complexity and song sharing shaped by habitat structure? An information theory and statistical approach.
    Briefer E; Osiejuk TS; Rybak F; Aubin T
    J Theor Biol; 2010 Jan; 262(1):151-64. PubMed ID: 19782691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stable isotopes examined across a migratory divide in Scandinavian willow warblers (Phylloscopus trochilus trochilus and Phylloscopus trochilus acredula) reflect their African winter quarters.
    Chamberlain CP; Bensch S; Feng X; Akesson S; Andersson T
    Proc Biol Sci; 2000 Jan; 267(1438):43-8. PubMed ID: 10670951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transposable elements mark a repeat-rich region associated with migratory phenotypes of willow warblers (Phylloscopus trochilus).
    Caballero-López V; Lundberg M; Sokolovskis K; Bensch S
    Mol Ecol; 2022 Feb; 31(4):1128-1141. PubMed ID: 34837428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Do all inter-patch movements represent dispersal? A mixed kernel study of butterfly mobility in fragmented landscapes.
    Hovestadt T; Binzenhöfer B; Nowicki P; Settele J
    J Anim Ecol; 2011 Sep; 80(5):1070-7. PubMed ID: 21585369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Habitat properties are key drivers of Borrelia burgdorferi (s.l.) prevalence in Ixodes ricinus populations of deciduous forest fragments.
    Ehrmann S; Ruyts SC; Scherer-Lorenzen M; Bauhus J; Brunet J; Cousins SAO; Deconchat M; Decocq G; De Frenne P; De Smedt P; Diekmann M; Gallet-Moron E; Gärtner S; Hansen K; Kolb A; Lenoir J; Lindgren J; Naaf T; Paal T; Panning M; Prinz M; Valdés A; Verheyen K; Wulf M; Liira J
    Parasit Vectors; 2018 Jan; 11(1):23. PubMed ID: 29310722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial scale and movement behaviour traits control the impacts of habitat fragmentation on individual fitness.
    Cattarino L; McAlpine CA; Rhodes JR
    J Anim Ecol; 2016 Jan; 85(1):168-77. PubMed ID: 26250334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting patch occupancy in fragmented landscapes at the rangewide scale for an endangered species: an example of an American warbler.
    Collier BA; Groce JE; Morrison ML; Newnam JC; Campomizzi AJ; Farrell SL; Mathewson HA; Snelgrove RT; Carroll RJ; Wilkins RN
    Divers Distrib; 2012 Feb; 18(2):158-167. PubMed ID: 22408381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of a Florida Gulf Coast Barrier Island by Spring Trans-Gulf Migrants and the Projected Effects of Sea Level Rise on Habitat Availability.
    Lester LA; Gutierrez Ramirez M; Kneidel AH; Heckscher CM
    PLoS One; 2016; 11(3):e0148975. PubMed ID: 26934343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tolerance to habitat fragmentation influences the colonization of new habitat by forest birds.
    Villard MA; Taylor PD
    Oecologia; 1994 Aug; 98(3-4):393-401. PubMed ID: 28313917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A multi-scale examination of stopover habitat use by birds.
    Buler JJ; Moore FR; Woltmann S
    Ecology; 2007 Jul; 88(7):1789-802. PubMed ID: 17645025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carry-Over Effects of Nonbreeding Habitat on Start-to-Finish Spring Migration Performance of a Songbird.
    McKinnon EA; Stanley CQ; Stutchbury BJ
    PLoS One; 2015; 10(11):e0141580. PubMed ID: 26529241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Disrupted fine-scale population processes in fragmented landscapes despite large-scale genetic connectivity for a widespread and common cooperative breeder: the superb fairy-wren (Malurus cyaneus).
    Harrisson KA; Pavlova A; Amos JN; Takeuchi N; Lill A; Radford JQ; Sunnucks P
    J Anim Ecol; 2013 Mar; 82(2):322-33. PubMed ID: 23190389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.