These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 30158603)

  • 41. Constraining future terrestrial carbon cycle projections using observation-based water and carbon flux estimates.
    Mystakidis S; Davin EL; Gruber N; Seneviratne SI
    Glob Chang Biol; 2016 Jun; 22(6):2198-215. PubMed ID: 26732346
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Elevated CO
    Song J; Wan S; Piao S; Hui D; Hovenden MJ; Ciais P; Liu Y; Liu Y; Zhong M; Zheng M; Ma G; Zhou Z; Ru J
    Ecol Lett; 2019 Mar; 22(3):458-468. PubMed ID: 30609167
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle.
    McNeil BI; Sasse TP
    Nature; 2016 Jan; 529(7586):383-6. PubMed ID: 26791726
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Five decades of northern land carbon uptake revealed by the interhemispheric CO
    Ciais P; Tan J; Wang X; Roedenbeck C; Chevallier F; Piao SL; Moriarty R; Broquet G; Le Quéré C; Canadell JG; Peng S; Poulter B; Liu Z; Tans P
    Nature; 2019 Apr; 568(7751):221-225. PubMed ID: 30944480
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impacts of large-scale climatic disturbances on the terrestrial carbon cycle.
    Erbrecht T; Lucht W
    Carbon Balance Manag; 2006 Jul; 1():7. PubMed ID: 16930463
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO
    Lemordant L; Gentine P; Swann AS; Cook BI; Scheff J
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4093-4098. PubMed ID: 29610293
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impact of the 2015/2016 El Niño on the terrestrial carbon cycle constrained by bottom-up and top-down approaches.
    Bastos A; Friedlingstein P; Sitch S; Chen C; Mialon A; Wigneron JP; Arora VK; Briggs PR; Canadell JG; Ciais P; Chevallier F; Cheng L; Delire C; Haverd V; Jain AK; Joos F; Kato E; Lienert S; Lombardozzi D; Melton JR; Myneni R; Nabel JEMS; Pongratz J; Poulter B; Rödenbeck C; Séférian R; Tian H; van Eck C; Viovy N; Vuichard N; Walker AP; Wiltshire A; Yang J; Zaehle S; Zeng N; Zhu D
    Philos Trans R Soc Lond B Biol Sci; 2018 Oct; 373(1760):. PubMed ID: 30297465
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent global decline of CO
    Wang S; Zhang Y; Ju W; Chen JM; Ciais P; Cescatti A; Sardans J; Janssens IA; Wu M; Berry JA; Campbell E; Fernández-Martínez M; Alkama R; Sitch S; Friedlingstein P; Smith WK; Yuan W; He W; Lombardozzi D; Kautz M; Zhu D; Lienert S; Kato E; Poulter B; Sanders TGM; Krüger I; Wang R; Zeng N; Tian H; Vuichard N; Jain AK; Wiltshire A; Haverd V; Goll DS; Peñuelas J
    Science; 2020 Dec; 370(6522):1295-1300. PubMed ID: 33303610
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis.
    Keeling RF; Graven HD; Welp LR; Resplandy L; Bi J; Piper SC; Sun Y; Bollenbacher A; Meijer HAJ
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):10361-10366. PubMed ID: 28893986
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Global carbon export from the terrestrial biosphere controlled by erosion.
    Galy V; Peucker-Ehrenbrink B; Eglinton T
    Nature; 2015 May; 521(7551):204-7. PubMed ID: 25971513
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Europe's terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions.
    Janssens IA; Freibauer A; Ciais P; Smith P; Nabuurs GJ; Folberth G; Schlamadinger B; Hutjes RW; Ceulemans R; Schulze ED; Valentini R; Dolman AJ
    Science; 2003 Jun; 300(5625):1538-42. PubMed ID: 12764201
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Observation-based global soil heterotrophic respiration indicates underestimated turnover and sequestration of soil carbon by terrestrial ecosystem models.
    He Y; Ding J; Dorji T; Wang T; Li J; Smith P
    Glob Chang Biol; 2022 Sep; 28(18):5547-5559. PubMed ID: 35652687
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes.
    Eldering A; Wennberg PO; Crisp D; Schimel DS; Gunson MR; Chatterjee A; Liu J; Schwandner FM; Sun Y; O'Dell CW; Frankenberg C; Taylor T; Fisher B; Osterman GB; Wunch D; Hakkarainen J; Tamminen J; Weir B
    Science; 2017 Oct; 358(6360):. PubMed ID: 29026012
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Global carbon dioxide emissions from inland waters.
    Raymond PA; Hartmann J; Lauerwald R; Sobek S; McDonald C; Hoover M; Butman D; Striegl R; Mayorga E; Humborg C; Kortelainen P; Dürr H; Meybeck M; Ciais P; Guth P
    Nature; 2013 Nov; 503(7476):355-9. PubMed ID: 24256802
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide.
    Walker JC; Kasting JF
    Glob Planet Change; 1992; 97():151-89. PubMed ID: 11537854
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Key knowledge and data gaps in modelling the influence of CO
    Pugh TAM; Müller C; Arneth A; Haverd V; Smith B
    J Plant Physiol; 2016 Sep; 203():3-15. PubMed ID: 27233774
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Amazon River carbon dioxide outgassing fuelled by wetlands.
    Abril G; Martinez JM; Artigas LF; Moreira-Turcq P; Benedetti MF; Vidal L; Meziane T; Kim JH; Bernardes MC; Savoye N; Deborde J; Souza EL; Albéric P; Landim de Souza MF; Roland F
    Nature; 2014 Jan; 505(7483):395-8. PubMed ID: 24336199
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO
    Ramonet M; Ciais P; Apadula F; Bartyzel J; Bastos A; Bergamaschi P; Blanc PE; Brunner D; Caracciolo di Torchiarolo L; Calzolari F; Chen H; Chmura L; Colomb A; Conil S; Cristofanelli P; Cuevas E; Curcoll R; Delmotte M; di Sarra A; Emmenegger L; Forster G; Frumau A; Gerbig C; Gheusi F; Hammer S; Haszpra L; Hatakka J; Hazan L; Heliasz M; Henne S; Hensen A; Hermansen O; Keronen P; Kivi R; Komínková K; Kubistin D; Laurent O; Laurila T; Lavric JV; Lehner I; Lehtinen KEJ; Leskinen A; Leuenberger M; Levin I; Lindauer M; Lopez M; Myhre CL; Mammarella I; Manca G; Manning A; Marek MV; Marklund P; Martin D; Meinhardt F; Mihalopoulos N; Mölder M; Morgui JA; Necki J; O'Doherty S; O'Dowd C; Ottosson M; Philippon C; Piacentino S; Pichon JM; Plass-Duelmer C; Resovsky A; Rivier L; Rodó X; Sha MK; Scheeren HA; Sferlazzo D; Spain TG; Stanley KM; Steinbacher M; Trisolino P; Vermeulen A; Vítková G; Weyrauch D; Xueref-Remy I; Yala K; Yver Kwok C
    Philos Trans R Soc Lond B Biol Sci; 2020 Oct; 375(1810):20190513. PubMed ID: 32892733
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Carbon dioxide dynamics in a lake and a reservoir on a tropical island (Bali, Indonesia).
    Macklin PA; Suryaputra IGNA; Maher DT; Santos IR
    PLoS One; 2018; 13(6):e0198678. PubMed ID: 29889896
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Millennial-scale hydroclimate control of tropical soil carbon storage.
    Hein CJ; Usman M; Eglinton TI; Haghipour N; Galy VV
    Nature; 2020 May; 581(7806):63-66. PubMed ID: 32376961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.