These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 30158851)
1. Influence of Individual Differences in fMRI-Based Pain Prediction Models on Between-Individual Prediction Performance. Lin Q; Li L; Liu J; Liu W; Huang G; Zhang Z Front Neurosci; 2018; 12():569. PubMed ID: 30158851 [TBL] [Abstract][Full Text] [Related]
2. Designing individual-specific and trial-specific models to accurately predict the intensity of nociceptive pain from single-trial fMRI responses. Lin Q; Huang G; Li L; Zhang L; Liang Z; Anter AM; Zhang Z Neuroimage; 2021 Jan; 225():117506. PubMed ID: 33127478 [TBL] [Abstract][Full Text] [Related]
3. Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. Marquand A; Howard M; Brammer M; Chu C; Coen S; Mourão-Miranda J Neuroimage; 2010 Feb; 49(3):2178-89. PubMed ID: 19879364 [TBL] [Abstract][Full Text] [Related]
4. Decoding Subjective Intensity of Nociceptive Pain from Pre-stimulus and Post-stimulus Brain Activities. Tu Y; Tan A; Bai Y; Hung YS; Zhang Z Front Comput Neurosci; 2016; 10():32. PubMed ID: 27148029 [TBL] [Abstract][Full Text] [Related]
5. Effects of Positive and Negative Expectations on Human Pain Perception Engage Separate But Interrelated and Dependently Regulated Cerebral Mechanisms. Shih YW; Tsai HY; Lin FS; Lin YH; Chiang CY; Lu ZL; Tseng MT J Neurosci; 2019 Feb; 39(7):1261-1274. PubMed ID: 30552181 [TBL] [Abstract][Full Text] [Related]
6. Magnitude and Temporal Variability of Inter-stimulus EEG Modulate the Linear Relationship Between Laser-Evoked Potentials and Fast-Pain Perception. Li L; Huang G; Lin Q; Liu J; Zhang S; Zhang Z Front Neurosci; 2018; 12():340. PubMed ID: 29904336 [TBL] [Abstract][Full Text] [Related]
7. Pain-Related Expectation and Prediction Error Signals in the Anterior Insula Are Not Related to Aversiveness. Fazeli S; Büchel C J Neurosci; 2018 Jul; 38(29):6461-6474. PubMed ID: 29934355 [TBL] [Abstract][Full Text] [Related]
8. Inter-individual differences in pain processing investigated by functional magnetic resonance imaging of the brainstem and spinal cord. Khan HS; Stroman PW Neuroscience; 2015 Oct; 307():231-41. PubMed ID: 26335379 [TBL] [Abstract][Full Text] [Related]
9. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
10. Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging. Kim HC; Bandettini PA; Lee JH Neuroimage; 2019 Feb; 186():607-627. PubMed ID: 30366076 [TBL] [Abstract][Full Text] [Related]
11. Predicting individual brain functional connectivity using a Bayesian hierarchical model. Dai T; Guo Y; Neuroimage; 2017 Feb; 147():772-787. PubMed ID: 27915121 [TBL] [Abstract][Full Text] [Related]
12. Threat Prediction from Schemas as a Source of Bias in Pain Perception. Lim M; O'Grady C; Cane D; Goyal A; Lynch M; Beyea S; Hashmi JA J Neurosci; 2020 Feb; 40(7):1538-1548. PubMed ID: 31896672 [TBL] [Abstract][Full Text] [Related]
13. The Subjective Experience of Pain: An FMRI Study of Percept-Related Models and Functional Connectivity. Wilcox CE; Mayer AR; Teshiba TM; Ling J; Smith BW; Wilcox GL; Mullins PG Pain Med; 2015 Nov; 16(11):2121-33. PubMed ID: 25989475 [TBL] [Abstract][Full Text] [Related]
14. Group-regularized individual prediction: theory and application to pain. Lindquist MA; Krishnan A; López-Solà M; Jepma M; Woo CW; Koban L; Roy M; Atlas LY; Schmidt L; Chang LJ; Reynolds Losin EA; Eisenbarth H; Ashar YK; Delk E; Wager TD Neuroimage; 2017 Jan; 145(Pt B):274-287. PubMed ID: 26592808 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous recording of laser-evoked brain potentials and continuous, high-field functional magnetic resonance imaging in humans. Iannetti GD; Niazy RK; Wise RG; Jezzard P; Brooks JC; Zambreanu L; Vennart W; Matthews PM; Tracey I Neuroimage; 2005 Nov; 28(3):708-19. PubMed ID: 16112589 [TBL] [Abstract][Full Text] [Related]
16. Comparing metrics to evaluate performance of regression methods for decoding of neural signals. Spuler M; Sarasola-Sanz A; Birbaumer N; Rosenstiel W; Ramos-Murguialday A Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1083-6. PubMed ID: 26736453 [TBL] [Abstract][Full Text] [Related]
17. Abnormal Low-Frequency Oscillations Reflect Trait-Like Pain Ratings in Chronic Pain Patients Revealed through a Machine Learning Approach. Rogachov A; Cheng JC; Hemington KS; Bosma RL; Kim JA; Osborne NR; Inman RD; Davis KD J Neurosci; 2018 Aug; 38(33):7293-7302. PubMed ID: 30012686 [TBL] [Abstract][Full Text] [Related]
18. Normalization of Pain-Evoked Neural Responses Using Spontaneous EEG Improves the Performance of EEG-Based Cross-Individual Pain Prediction. Bai Y; Huang G; Tu Y; Tan A; Hung YS; Zhang Z Front Comput Neurosci; 2016; 10():31. PubMed ID: 27148028 [TBL] [Abstract][Full Text] [Related]
19. Prediction of individual clinical scores in patients with Parkinson's disease using resting-state functional magnetic resonance imaging. Hou Y; Luo C; Yang J; Ou R; Song W; Wei Q; Cao B; Zhao B; Wu Y; Shang HF; Gong Q J Neurol Sci; 2016 Jul; 366():27-32. PubMed ID: 27288771 [TBL] [Abstract][Full Text] [Related]
20. Capturing the musical brain with Lasso: Dynamic decoding of musical features from fMRI data. Toiviainen P; Alluri V; Brattico E; Wallentin M; Vuust P Neuroimage; 2014 Mar; 88():170-80. PubMed ID: 24269803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]