These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 3015887)
1. In vivo phosphorylation of Saccharomyces cerevisiae ribosomal protein S10 by cyclic-AMP-dependent protein kinase. Otaka E; Kumazaki T; Matsumoto K J Bacteriol; 1986 Aug; 167(2):713-5. PubMed ID: 3015887 [TBL] [Abstract][Full Text] [Related]
2. Phosphorylation of ribosomal proteins during differentiation of Saccharomyces cerevisiae. Szyszka R; Gasior E Acta Biochim Pol; 1984; 31(4):375-82. PubMed ID: 6099944 [TBL] [Abstract][Full Text] [Related]
3. Phosphorylation in vitro and in vivo of ribosomal proteins from Saccharomyces cerevisia. Hébert J; Pierre M; Loeb JE Eur J Biochem; 1977 Jan; 72(1):167-74. PubMed ID: 318998 [TBL] [Abstract][Full Text] [Related]
4. Influence of the state of ribosome association on the phosphorylation of ribosomal proteins in isolated ribosome--protein kinase systems from rat cerebral cortex. Francis TA; Roberts S Biochem J; 1982 Nov; 208(2):289-300. PubMed ID: 6297465 [TBL] [Abstract][Full Text] [Related]
5. Comparison of phosphorylation of ribosomal proteins from HeLa and Krebs II ascites-tumour cells by cyclic AMP-dependent and cyclic GMP-dependent protein kinases. Issinger OG; Beier H; Speichermann N; Flokerzi V; Hofmann F Biochem J; 1980 Jan; 185(1):89-99. PubMed ID: 6246882 [TBL] [Abstract][Full Text] [Related]
6. In vivo and in vitro phosphorylation of ribosomal proteins by protein kinases from Saccharomyces cerevisiae. Becker-Ursic D; Davies J Biochemistry; 1976 Jun; 15(11):2289-96. PubMed ID: 179565 [TBL] [Abstract][Full Text] [Related]
7. On the role of cyclic AMP-independent protein kinases in the modification of yeast ribosomal proteins in vivo. Kudlicki W; Szyszka R; Grankowski N; Gasior E Acta Biochim Pol; 1981; 28(1):51-9. PubMed ID: 6269337 [TBL] [Abstract][Full Text] [Related]
8. Adenosine 3'5'-m onophosphate dependent phosphorylation of ribosomes and ribosomal subunits from bovine corpus luteum. Azhar S; Menon KM Biochim Biophys Acta; 1975 May; 392(1):64-74. PubMed ID: 164956 [TBL] [Abstract][Full Text] [Related]
9. Phosphorylation of ribosomal proteins from eukaryotes in homologous and heterogous cell-free systems. Vassileva Grancharova T; Argirova Getova T; Krumov Nikolov T Biochim Biophys Acta; 1976 Feb; 418(3):397-403. PubMed ID: 764872 [TBL] [Abstract][Full Text] [Related]
10. Evidence for a highly specific protein kinase phosphorylating two strongly acidic proteins of yeast 60 S ribosomal subunit. Kudlicki W; Szyszka R; Paleń E; Gasior E Biochim Biophys Acta; 1980 Dec; 633(3):376-85. PubMed ID: 7011390 [TBL] [Abstract][Full Text] [Related]
11. Phosphorylation of 40-S ribosomal subunits by cAMP-dependent, cGMP-dependent and protease-activated protein kinases. del Grande RW; Traugh JA Eur J Biochem; 1982 Apr; 123(2):421-8. PubMed ID: 6281008 [TBL] [Abstract][Full Text] [Related]
12. Phosphorylation of acidic ribosomal proteins by ribosome-associated protein kinases of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Jakubowicz T; Cytryńska M; Kowalczyk W; Gasior E Acta Biochim Pol; 1993; 40(4):497-505. PubMed ID: 8140824 [TBL] [Abstract][Full Text] [Related]
13. The ribosomal proteins phosphorylated in vitro by protein kinase activities from Krebs II ascites cells. McGarvey MJ; Leader DP Biosci Rep; 1983 Jul; 3(7):621-9. PubMed ID: 6578854 [TBL] [Abstract][Full Text] [Related]
14. The ribosomal proteins of Saccharomyces cerevisiae. Phosphorylated and exchangeable proteins. Zinker S; Warner JR J Biol Chem; 1976 Mar; 251(6):1799-807. PubMed ID: 767341 [TBL] [Abstract][Full Text] [Related]
15. Phosphorylation of A-proteins by protein kinases bound to yeast ribosomes. Cytryńska M; Jakubowicz T; Gasior E Acta Biochim Pol; 1994; 41(2):196-8. PubMed ID: 7976044 [No Abstract] [Full Text] [Related]
16. Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMP-dependent protein phosphorylation. Shin DY; Matsumoto K; Iida H; Uno I; Ishikawa T Mol Cell Biol; 1987 Jan; 7(1):244-50. PubMed ID: 3031463 [TBL] [Abstract][Full Text] [Related]
17. Role of cyclic-AMP-dependent protein kinase in catabolite inactivation of the glucose and galactose transporters in Saccharomyces cerevisiae. Ramos J; Cirillo VP J Bacteriol; 1989 Jun; 171(6):3545-8. PubMed ID: 2542229 [TBL] [Abstract][Full Text] [Related]
18. Yeast protein phosphatase active with acidic ribosomal proteins. Pilecki M; Grzyb A; Zień P; Sekuła O; Szyszka R J Basic Microbiol; 2000; 40(4):251-60. PubMed ID: 10986671 [TBL] [Abstract][Full Text] [Related]
19. PKA from Saccharomyces cerevisiae can be activated by cyclic AMP and cyclic GMP. Cytryńska M; Wojda I; Frajnt M; Jakubowicz T Can J Microbiol; 1999 Jan; 45(1):31-7. PubMed ID: 10349718 [TBL] [Abstract][Full Text] [Related]
20. Identification of phosphoproteins correlated with proliferation and cell cycle arrest in Saccharomyces cerevisiae: positive and negative regulation by cAMP-dependent protein kinase. Tripp ML; Piñon R; Meisenhelder J; Hunter T Proc Natl Acad Sci U S A; 1986 Aug; 83(16):5973-7. PubMed ID: 3526346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]