BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 3015894)

  • 1. A perspective on Q-cycles.
    Rich PR
    J Bioenerg Biomembr; 1986 Jun; 18(3):145-56. PubMed ID: 3015894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The semiquinone cycle. A hypothesis of electron transfer and proton translocation in cytochrome bc-type complexes.
    Wikström M; Krab K
    J Bioenerg Biomembr; 1986 Jun; 18(3):181-93. PubMed ID: 3015895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What is the Role of Lipid Membrane-embedded Quinones in Mitochondria and Chloroplasts? Chemiosmotic Q-cycle versus Murburn Reaction Perspective.
    Manoj KM; Gideon DA; Parashar A
    Cell Biochem Biophys; 2021 Mar; 79(1):3-10. PubMed ID: 32989571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radical-pair energetics and decay mechanisms in reaction centers containing anthraquinones, naphthoquinones or benzoquinones in place of ubiquinone.
    Woodbury NW; Parson WW; Gunner MR; Prince RC; Dutton PL
    Biochim Biophys Acta; 1986 Aug; 851(1):6-22. PubMed ID: 3524681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron and proton transfers through quinones and cytochrome bc complexes.
    Rich PR
    Biochim Biophys Acta; 1984 Apr; 768(1):53-79. PubMed ID: 6322844
    [No Abstract]   [Full Text] [Related]  

  • 6. The oxidation-reduction kinetics of cytochromes b, c1 and c in initially fully reduced mitochondrial membranes are in agreement with the Q-cycle hypothesis.
    de Vries S; van Hoek AN; Berden JA
    Biochim Biophys Acta; 1988 Sep; 935(2):208-16. PubMed ID: 2843229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction of quinone analogues with wild-type and ubiquinone-deficient yeast mitochondria.
    Zhu QS; Beattie DS
    Biochim Biophys Acta; 1988 Jul; 934(3):303-13. PubMed ID: 2840117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitation of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone binding sites in chloroplast membranes: evidence for a functional dimer of the cytochrome b6f complex.
    Graan T; Ort DR
    Arch Biochem Biophys; 1986 Aug; 248(2):445-51. PubMed ID: 3740838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Rhodospirillum rubrum cytochrome bc1 complex: peptide composition, prosthetic group content and quinone binding.
    Kriauciunas A; Yu L; Yu CA; Wynn RM; Knaff DB
    Biochim Biophys Acta; 1989 Aug; 976(1):70-6. PubMed ID: 2548618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic and kinetic considerations of Q-cycle mechanisms and the oxidant-induced reduction of cytochromes b.
    Hendler RW; Bunow B; Rieske JS
    J Bioenerg Biomembr; 1985 Feb; 17(1):51-64. PubMed ID: 3988725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site of electron acceptance by 3,6-dichloro-2,5-dimethoxy-p-benzoquinone and its relation to the bicarbonate effect on photosynthetic electron transport.
    Sarojini G; Daniell H; Vermaas WF
    Biochem Biophys Res Commun; 1981 Oct; 102(3):944-51. PubMed ID: 7306199
    [No Abstract]   [Full Text] [Related]  

  • 12. Proton and electron transfer in bacterial reaction centers.
    Okamura MY; Paddock ML; Graige MS; Feher G
    Biochim Biophys Acta; 2000 May; 1458(1):148-63. PubMed ID: 10812030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of photoreductions by photosystem II in isolated chloroplasts. An energy-conserving step in the photoreduction of benzoquinones by photosystem II in the presence of dibromothymoquinone.
    Trebst A; Reimer S
    Biochim Biophys Acta; 1973 Apr; 305(1):129-39. PubMed ID: 4719596
    [No Abstract]   [Full Text] [Related]  

  • 14. A semiquinone intermediate generated at the Qo site of the cytochrome bc1 complex: importance for the Q-cycle and superoxide production.
    Cape JL; Bowman MK; Kramer DM
    Proc Natl Acad Sci U S A; 2007 May; 104(19):7887-92. PubMed ID: 17470780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo analysis of the effect of dicyclohexylcarbodiimide on electron and proton transfers in cytochrome bf complex of Chlorella sorokiniana.
    Joliot P; Joliot A
    Biochemistry; 1998 Jul; 37(29):10404-10. PubMed ID: 9671509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible redox energy coupling in electron transfer chains.
    Osyczka A; Moser CC; Daldal F; Dutton PL
    Nature; 2004 Feb; 427(6975):607-12. PubMed ID: 14961113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The PS II complex possesses a quinone-binding site that differs from Q(A) and Q(B) and interacts with cytochrome b559.
    Kaminskaya OP; Shuvalov VA; Renger G
    Dokl Biochem Biophys; 2007; 412():12-4. PubMed ID: 17506344
    [No Abstract]   [Full Text] [Related]  

  • 18. Observation of the protonated semiquinone intermediate in isolated reaction centers from Rhodobacter sphaeroides: implications for the mechanism of electron and proton transfer in proteins.
    Graige MS; Paddock ML; Feher G; Okamura MY
    Biochemistry; 1999 Aug; 38(35):11465-73. PubMed ID: 10471298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser flash photolysis studies of electron transfer between semiquinone and fully reduced free flavins and the cytochrome c-cytochrome oxidase complex.
    Ahmad I; Cusanovich MA; Tollin G
    Biochemistry; 1982 Jun; 21(13):3122-8. PubMed ID: 6285959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The acceptor quinone complex of Rhodopseudomonas viridis reaction centers.
    Shopes RJ; Wraight CA
    Biochim Biophys Acta; 1985 Mar; 806(3):348-56. PubMed ID: 2982395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.