These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30159398)

  • 21. Folding funnels and conformational transitions via hinge-bending motions.
    Kumar S; Ma B; Tsai CJ; Wolfson H; Nussinov R
    Cell Biochem Biophys; 1999; 31(2):141-64. PubMed ID: 10593256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Free-energy landscapes of ion-channel gating are malleable: changes in the number of bound ligands are accompanied by changes in the location of the transition state in acetylcholine-receptor channels.
    Grosman C
    Biochemistry; 2003 Dec; 42(50):14977-87. PubMed ID: 14674774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformational equilibria and free energy profiles for the allosteric transition of the ribose-binding protein.
    Ravindranathan KP; Gallicchio E; Levy RM
    J Mol Biol; 2005 Oct; 353(1):196-210. PubMed ID: 16157349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantifying robustness and dissipation cost of yeast cell cycle network: the funneled energy landscape perspectives.
    Han B; Wang J
    Biophys J; 2007 Jun; 92(11):3755-63. PubMed ID: 17350995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermodynamic and kinetic stability of the Josephin Domain closed arrangement: evidences from replica exchange molecular dynamics.
    Grasso G; Tuszynski JA; Morbiducci U; Licandro G; Danani A; Deriu MA
    Biol Direct; 2017 Jan; 12(1):2. PubMed ID: 28103906
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Funneled potential and flux landscapes dictate the stabilities of both the states and the flow: Fission yeast cell cycle.
    Luo X; Xu L; Han B; Wang J
    PLoS Comput Biol; 2017 Sep; 13(9):e1005710. PubMed ID: 28892489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Entropy and barrier-controlled fluctuations determine conformational viscoelasticity of single biomolecules.
    Khatri BS; Kawakami M; Byrne K; Smith DA; McLeish TC
    Biophys J; 2007 Mar; 92(6):1825-35. PubMed ID: 17158578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein energy landscape exploration with structure-based models.
    Neelamraju S; Wales DJ; Gosavi S
    Curr Opin Struct Biol; 2020 Oct; 64():145-151. PubMed ID: 32795948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Perturbation of the equilibrium between open and closed conformations of the periplasmic C4-dicarboxylate binding protein from Rhodobacter capsulatus.
    Walmsley AR; Shaw JG; Kelly DJ
    Biochemistry; 1992 Nov; 31(45):11175-81. PubMed ID: 1445856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy landscapes of quantum Lennard-Jones solids.
    Chakravarty C
    J Phys Chem A; 2011 Jun; 115(25):7028-33. PubMed ID: 21456608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of Go-like interactions on global shapes of energy landscapes in beta-barrel forming model proteins: inherent structure analysis and statistical temperature molecular dynamics simulation.
    Kim J; Keyes T
    J Phys Chem B; 2008 Jan; 112(3):954-66. PubMed ID: 18088107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics and statistical distributions of single-molecule conformational dynamics.
    Lu Q; Wang J
    J Phys Chem B; 2009 Feb; 113(5):1517-21. PubMed ID: 19140753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploration of multi-state conformational dynamics and underlying global functional landscape of maltose binding protein.
    Wang Y; Tang C; Wang E; Wang J
    PLoS Comput Biol; 2012; 8(4):e1002471. PubMed ID: 22532792
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring and Engineering the Conformational Landscape of Calmodulin through Specific Interactions.
    Halder R; Jana B
    J Phys Chem B; 2019 Nov; 123(44):9321-9327. PubMed ID: 31613097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring the free energy landscape of proteins using magnetic tweezers.
    Sun H; Le S; Guo Z; Chen H
    Methods Enzymol; 2024; 694():237-261. PubMed ID: 38492953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence-dependent properties.
    Veitshans T; Klimov D; Thirumalai D
    Fold Des; 1997; 2(1):1-22. PubMed ID: 9080195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient Conformational Search Based on Structural Dissimilarity Sampling: Applications for Reproducing Structural Transitions of Proteins.
    Harada R; Shigeta Y
    J Chem Theory Comput; 2017 Mar; 13(3):1411-1423. PubMed ID: 28170260
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The potential and flux landscape theory of evolution.
    Zhang F; Xu L; Zhang K; Wang E; Wang J
    J Chem Phys; 2012 Aug; 137(6):065102. PubMed ID: 22897313
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing heme protein conformational equilibration rates with kinetic selection.
    Tian WD; Sage JT; Champion PM; Chien E; Sligar SG
    Biochemistry; 1996 Mar; 35(11):3487-502. PubMed ID: 8639499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The energy landscape of a fast-folding protein mapped by Ala-->Gly substitutions.
    Burton RE; Huang GS; Daugherty MA; Calderone TL; Oas TG
    Nat Struct Biol; 1997 Apr; 4(4):305-10. PubMed ID: 9095199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.