These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 3015948)

  • 1. A study of roles of evolutionarily invariant proline 30 and glycine 34 of cytochrome c.
    Poerio E; Parr GR; Taniuchi H
    J Biol Chem; 1986 Aug; 261(24):10976-89. PubMed ID: 3015948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study on the role of evolutionarily invariant leucine 32 of cytochrome c.
    Juillerat MA; Taniuchi H
    J Biol Chem; 1986 Feb; 261(6):2697-711. PubMed ID: 3005260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of thermodynamic and kinetic effects between the Leu32-->norvaline and Leu35-->norvaline substitutions of the three-fragment complex of cytochrome c.
    Picur B; Lisowski M; Taniuchi H; Poerio E
    Arch Biochem Biophys; 1994 Dec; 315(2):533-47. PubMed ID: 7986101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramolecular flip between two alternative forms of complex formed from a heme fragment and apoprotein of horse cytochrome c.
    Juillerat MA; Taniuchi H
    J Biol Chem; 1987 Oct; 262(28):13440-8. PubMed ID: 2820970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of a compact structure for kinetic intermediates in the folding of a fragment complex of tuna cytochrome c.
    Parr GR; Taniuchi H
    J Biol Chem; 1983 Mar; 258(6):3759-63. PubMed ID: 6300055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of fine specificity of monoclonal antibodies to yeast iso-1-cytochrome c.
    Silvestri I; Taniuchi H
    J Biol Chem; 1988 Dec; 263(35):18702-15. PubMed ID: 2848803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of core domains, and the core domain-domain interaction of cytochrome c fragment complex.
    Fisher A; Taniuchi H
    Arch Biochem Biophys; 1992 Jul; 296(1):1-16. PubMed ID: 1376596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ordered complexes of cytochrome c fragments. Kinetics of formation of the reduced (ferrous) forms.
    Parr GR; Taniuchi H
    J Biol Chem; 1981 Jan; 256(1):125-32. PubMed ID: 6256341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide.
    Chen YS; Chen CC; Horng JC
    Biopolymers; 2011; 96(1):60-8. PubMed ID: 20560144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complexation which facilitates rejoining of horse cytochrome c apofragment [Homoser-lactone65](1-65) or [Homoser-lactone65] (23-65) to apofragment (66-104).
    Gozzini L; Taniuchi H; DiBello C
    Int J Pept Protein Res; 1991 Apr; 37(4):293-8. PubMed ID: 1654307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of a biologically active, ordered complex from two overlapping fragments of cytochrome c.
    Hantgan RR; Taniuchi H
    J Biol Chem; 1977 Feb; 252(4):1367-74. PubMed ID: 190231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid substitutions at tryptophan-51 of cytochrome c peroxidase: effects on coordination, species preference for cytochrome c, and electron transfer.
    Goodin DB; Davidson MG; Roe JA; Mauk AG; Smith M
    Biochemistry; 1991 May; 30(20):4953-62. PubMed ID: 1645185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of a heme fragment of horse cytochrome c which forms a productive complex with a native apofragment.
    Veloso D; Juillerat M; Taniuchi H
    J Biol Chem; 1984 May; 259(10):6067-73. PubMed ID: 6327663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of horse heart ferricytochrome c by bovine liver ferrocytochrome b5. Experimental and theoretical analysis.
    Eltis LD; Herbert RG; Barker PD; Mauk AG; Northrup SH
    Biochemistry; 1991 Apr; 30(15):3663-74. PubMed ID: 1849735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A complex of cardiac cytochrome c1 and cytochrome c.
    Chiang YL; Kaminsky LS; King TE
    J Biol Chem; 1976 Jan; 251(1):29-36. PubMed ID: 401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical, kinetic, and circular dichroic consequences of mutations at position 82 of yeast iso-1-cytochrome c.
    Rafferty SP; Pearce LL; Barker PD; Guillemette JG; Kay CM; Smith M; Mauk AG
    Biochemistry; 1990 Oct; 29(40):9365-9. PubMed ID: 2174257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic barriers to the folding of horse cytochrome C in the reduced state.
    Bhuyan AK; Kumar R
    Biochemistry; 2002 Oct; 41(42):12821-34. PubMed ID: 12379125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-dependent structure change and hyperfine nuclear magnetic resonance shifts in cytochrome c.
    Feng Y; Roder H; Englander SW
    Biochemistry; 1990 Apr; 29(14):3494-504. PubMed ID: 2162193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuna cytochrome c at 2.0 A resolution. II. Ferrocytochrome structure analysis.
    Takano T; Trus BL; Mandel N; Mandel G; Kallai OB; Swanson R; Dickerson RE
    J Biol Chem; 1977 Jan; 252(2):776-85. PubMed ID: 188826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.