These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30159563)

  • 1. The reaction between the methyl Criegee intermediate and hydrogen chloride: an FTMW spectroscopic study.
    Cabezas C; Endo Y
    Phys Chem Chem Phys; 2018 Sep; 20(35):22569-22575. PubMed ID: 30159563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reactivity of the Criegee intermediate CH
    Cabezas C; Endo Y
    J Chem Phys; 2018 Jan; 148(1):014308. PubMed ID: 29306294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared Characterization of the Products of the Reaction between the Criegee Intermediate CH
    Su ZS; Lee YP
    J Phys Chem A; 2023 Aug; 127(33):6902-6915. PubMed ID: 37561815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational analysis of ethyl-substituted Criegee intermediate by FTMW spectroscopy.
    Cabezas C; Guillemin JC; Endo Y
    J Chem Phys; 2016 Dec; 145(22):224314. PubMed ID: 27984907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Communication: spectroscopic characterization of an alkyl substituted Criegee intermediate syn-CH(3)CHOO through pure rotational transitions.
    Nakajima M; Endo Y
    J Chem Phys; 2014 Jan; 140(1):011101. PubMed ID: 24410212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UV spectroscopic characterization of an alkyl substituted Criegee intermediate CH3CHOO.
    Beames JM; Liu F; Lu L; Lester MI
    J Chem Phys; 2013 Jun; 138(24):244307. PubMed ID: 23822244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of the Gas-Phase Reactions of
    Lade RE; Onel L; Blitz MA; Seakins PW; Stone D
    J Phys Chem A; 2024 Apr; 128(14):2815-2824. PubMed ID: 38551990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared identification of the Criegee intermediates syn- and anti-CH₃CHOO, and their distinct conformation-dependent reactivity.
    Lin HY; Huang YH; Wang X; Bowman JM; Nishimura Y; Witek HA; Lee YP
    Nat Commun; 2015 May; 6():7012. PubMed ID: 25959902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic Characterization of the Reaction Products between the Criegee Intermediate CH
    Cabezas C; Endo Y
    Chemphyschem; 2017 Jul; 18(14):1860-1863. PubMed ID: 28449411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing Criegee intermediate reactions with methanol by FTMW spectroscopy.
    Cabezas C; Endo Y
    Phys Chem Chem Phys; 2020 Jun; 22(24):13756-13763. PubMed ID: 32538397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO.
    Taatjes CA; Welz O; Eskola AJ; Savee JD; Scheer AM; Shallcross DE; Rotavera B; Lee EP; Dyke JM; Mok DK; Osborn DL; Percival CJ
    Science; 2013 Apr; 340(6129):177-80. PubMed ID: 23580524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unimolecular decomposition rates of a methyl-substituted Criegee intermediate
    Li YL; Kuo MT; Lin JJ
    RSC Adv; 2020 Feb; 10(14):8518-8524. PubMed ID: 35497839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detailed mechanism and kinetics of reactions of
    Behera B; Lee YP
    Phys Chem Chem Phys; 2024 Jan; 26(3):1950-1966. PubMed ID: 38116617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the conformational behavior of the doubly substituted methyl-ethyl Criegee intermediate by FTMW spectroscopy.
    Cabezas C; Guillemin JC; Endo Y
    J Chem Phys; 2017 May; 146(17):174304. PubMed ID: 28477595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of hydroperoxyethyl formate from the reaction between the methyl Criegee intermediate and formic acid.
    Cabezas C; Endo Y
    Phys Chem Chem Phys; 2020 Jan; 22(2):446-454. PubMed ID: 31746865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unimolecular Kinetics of Stabilized CH
    Robinson C; Onel L; Newman J; Lade R; Au K; Sheps L; Heard DE; Seakins PW; Blitz MA; Stone D
    J Phys Chem A; 2022 Oct; 126(39):6984-6994. PubMed ID: 36146923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier-transform microwave spectroscopy of a halogen substituted Criegee intermediate ClCHOO.
    Cabezas C; Guillemin JC; Endo Y
    J Chem Phys; 2016 Nov; 145(18):184304. PubMed ID: 27846682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and Self-Reaction Kinetics of Criegee Intermediates syn-CH
    Luo PL; Endo Y; Lee YP
    J Phys Chem Lett; 2018 Aug; 9(15):4391-4395. PubMed ID: 30024766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Criegee intermediate-formic acid reaction explored by rotational spectroscopy.
    Cabezas C; Endo Y
    Phys Chem Chem Phys; 2019 Aug; 21(33):18059-18064. PubMed ID: 31378795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dramatic Conformer-Dependent Reactivity of the Acetaldehyde Oxide Criegee Intermediate with Dimethylamine
    Vansco MF; Zou M; Antonov IO; Ramasesha K; Rotavera B; Osborn DL; Georgievskii Y; Percival CJ; Klippenstein SJ; Taatjes CA; Lester MI; Caravan RL
    J Phys Chem A; 2022 Feb; 126(5):710-719. PubMed ID: 34939803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.