BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30159579)

  • 1. Rheology and microstructure of concentrated microcrystalline cellulose (MCC)/1-allyl-3-methylimidazolium chloride (AmimCl)/water mixtures.
    Rajeev A; Deshpande AP; Basavaraj MG
    Soft Matter; 2018 Sep; 14(37):7615-7624. PubMed ID: 30159579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colloidal Particle-Induced Microstructural Transition in Cellulose/Ionic Liquid/Water Mixtures.
    Rajeev A; Basavaraj MG
    Langmuir; 2019 Sep; 35(38):12428-12438. PubMed ID: 31461293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase transition and rheological behaviors of concentrated cellulose/ionic liquid solutions.
    Song H; Zhang J; Niu Y; Wang Z
    J Phys Chem B; 2010 May; 114(18):6006-13. PubMed ID: 20405880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid crystalline phase and gel-sol transitions for concentrated microcrystalline cellulose (MCC)/1-ethyl-3-methylimidazolium acetate (EMIMAc) solutions.
    Song H; Niu Y; Wang Z; Zhang J
    Biomacromolecules; 2011 Apr; 12(4):1087-96. PubMed ID: 21361275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of bionanocomposite fiber based on cellulose and nano-SiO2 using ionic liquid.
    Song HZ; Luo ZQ; Wang CZ; Hao XF; Gao JG
    Carbohydr Polym; 2013 Oct; 98(1):161-7. PubMed ID: 23987330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solubility of starch and microcrystalline cellulose in 1-ethyl-3-methylimidazolium acetate ionic liquid and solution rheological properties.
    Tan X; Li X; Chen L; Xie F
    Phys Chem Chem Phys; 2016 Oct; 18(39):27584-27593. PubMed ID: 27722659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Celluloses in an ionic liquid: the rheological properties of the solutions spanning the dilute and semidilute regimes.
    Kuang QL; Zhao JC; Niu YH; Zhang J; Wang ZG
    J Phys Chem B; 2008 Aug; 112(33):10234-40. PubMed ID: 18661932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rheological properties of self-emulsifying systems, water and microcrystalline cellulose.
    Newton JM; Bazzigialuppi M; Podczeck F; Booth S; Clarke A
    Eur J Pharm Sci; 2005 Oct; 26(2):176-83. PubMed ID: 16046106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology and phase transition of waxy cornstarch in solvents of 1-allyl-3-methylimidazolium chloride/water.
    Zhao D; Wang C; Luo X; Fu X; Liu H; Yu L
    Int J Biol Macromol; 2015; 78():304-12. PubMed ID: 25900859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of rheological properties and conformation of silk fibroin in the solution of AmimCl.
    Wang Q; Yang Y; Chen X; Shao Z
    Biomacromolecules; 2012 Jun; 13(6):1875-81. PubMed ID: 22458362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheological characterization of Microcrystalline Cellulose/Sodiumcarboxymethyl cellulose hydrogels using a controlled stress rheometer: part I.
    Rudraraju VS; Wyandt CM
    Int J Pharm; 2005 Mar; 292(1-2):53-61. PubMed ID: 15725553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evaluation of the rheological properties of lactose/microcrystalline cellulose and water mixtures by controlled stress rheometry and the relationship to the production of spherical pellets by extrusion/spheronization.
    MacRitchie KA; Newton JM; Rowe RC
    Eur J Pharm Sci; 2002 Oct; 17(1-2):43-50. PubMed ID: 12356419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of a capillary rheometer to evaluate the rheological properties of microcrystalline cellulose and silicified microcrystalline cellulose wet masses.
    Luukkonen P; Newton JM; Podczeck F; Yliruusi J
    Int J Pharm; 2001 Mar; 216(1-2):147-57. PubMed ID: 11274816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheology of nanocrystalline cellulose aqueous suspensions.
    Shafiei-Sabet S; Hamad WY; Hatzikiriakos SG
    Langmuir; 2012 Dec; 28(49):17124-33. PubMed ID: 23146090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rheological properties of modified microcrystalline cellulose containing high levels of model drugs.
    Knight PE; Podczeck F; Newton JM
    J Pharm Sci; 2009 Jun; 98(6):2160-9. PubMed ID: 18825774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green synthesis of a typical chiral stationary phase of cellulose-tris(3, 5-dimethylphenylcarbamate).
    Liu RQ; Bai LY; Zhang YJ; Zhang YP
    Chem Cent J; 2013 Jul; 7(1):129. PubMed ID: 23890199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow behavior and linear viscoelasticity of cellulose 1-allyl-3-methylimidazolium formate solutions.
    Lu F; Wang L; Ji X; Cheng B; Song J; Gou X
    Carbohydr Polym; 2014 Jan; 99():132-9. PubMed ID: 24274489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl).
    Wang X; Li H; Cao Y; Tang Q
    Bioresour Technol; 2011 Sep; 102(17):7959-65. PubMed ID: 21684735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of chemical staple fibers by plasticizing bleached coniferous pulps with 1-allyl-3-methylimidazolium chloride.
    Qiao X; Lu H; Cai H; Ni S; Zhou X
    RSC Adv; 2021 Feb; 11(14):8019-8024. PubMed ID: 35423316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation and recovery of cellulose from Zoysia japonica by 1-allyl-3-methylimidazolium chloride.
    Li WZ; Ju MT; Wang YN; Liu L; Jiang Y
    Carbohydr Polym; 2013 Jan; 92(1):228-35. PubMed ID: 23218288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.