These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 3015975)

  • 1. Porous hydroxyapatite as a bone-graft substitute in metaphyseal defects. A histometric study.
    Holmes RE; Bucholz RW; Mooney V
    J Bone Joint Surg Am; 1986 Jul; 68(6):904-11. PubMed ID: 3015975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous hydroxyapatite as a bone graft substitute in diaphyseal defects: a histometric study.
    Holmes RE; Bucholz RW; Mooney V
    J Orthop Res; 1987; 5(1):114-21. PubMed ID: 3029358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous hydroxyapatite as a bone graft substitute in cranial reconstruction: a histometric study.
    Holmes RE; Hagler HK
    Plast Reconstr Surg; 1988 May; 81(5):662-71. PubMed ID: 2834761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomaterial aspects of Interpore-200 porous hydroxyapatite.
    White E; Shors EC
    Dent Clin North Am; 1986 Jan; 30(1):49-67. PubMed ID: 3514293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous hydroxyapatite as a bone graft substitute in alveolar ridge augmentation: a histometric study.
    Holmes RE; Roser SM
    Int J Oral Maxillofac Surg; 1987 Dec; 16(6):718-28. PubMed ID: 2830350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous hydroxylapatite as a bone graft substitute in mandibular contour augmentation: a histometric study.
    Holmes RE; Hagler HK
    J Oral Maxillofac Surg; 1987 May; 45(5):421-9. PubMed ID: 3033188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coralline hydroxyapatite bone-graft substitutes in a canine metaphyseal defect model. Radiographic-histometric correlation.
    Sartoris DJ; Holmes RE; Bucholz RW; Mooney V; Resnick D
    Invest Radiol; 1986 Nov; 21(11):851-7. PubMed ID: 2877959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calvarial reconstruction in baboons with porous hydroxyapatite.
    Ripamonti U
    J Craniofac Surg; 1992 Nov; 3(3):149-59. PubMed ID: 1338494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The morphogenesis of bone in replicas of porous hydroxyapatite obtained from conversion of calcium carbonate exoskeletons of coral.
    Ripamonti U
    J Bone Joint Surg Am; 1991 Jun; 73(5):692-703. PubMed ID: 1675218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regeneration of segmental diaphyseal defects in sheep tibiae using resorbable polymeric membranes: a preliminary study.
    Gugala Z; Gogolewski S
    J Orthop Trauma; 1999; 13(3):187-95. PubMed ID: 10206250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitute.
    Shimazaki K; Mooney V
    J Orthop Res; 1985; 3(3):301-10. PubMed ID: 2411894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous hydroxyapatite as a bone graft substitute in maxillary augmentation. An histometric study.
    Holmes R; Hagler H
    J Craniomaxillofac Surg; 1988 Jul; 16(5):199-205. PubMed ID: 2900254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A comparative morphometric and histologic study of five bone substitute materials].
    Chen L; Klaes W; Assenmacher S
    Zhonghua Yi Xue Za Zhi; 1996 Jul; 76(7):527-30. PubMed ID: 9275505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution.
    Eggli PS; Müller W; Schenk RK
    Clin Orthop Relat Res; 1988 Jul; (232):127-38. PubMed ID: 2838207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ingrowth and formation of bone in defects in an uncemented fiber-metal total hip-replacement model in dogs.
    Kang JD; McKernan DJ; Kruger M; Mutschler T; Thompson WH; Rubash HE
    J Bone Joint Surg Am; 1991 Jan; 73(1):93-105. PubMed ID: 1985999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of tissue reaction and osteointegration of metal implants between hydroxyapatite/Ti alloy coat: an animal experimental study.
    Itiravivong P; Promasa A; Laiprasert T; Techapongworachai T; Kuptniratsaikul S; Thanakit V; Heimann RB
    J Med Assoc Thai; 2003 Jun; 86 Suppl 2():S422-31. PubMed ID: 12930020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coralline hydroxyapatite bone-graft substitutes in a canine diaphyseal defect model. Radiographic-histometric correlation.
    Sartoris DJ; Holmes RE; Bucholz RW; Mooney V; Resnick D
    Invest Radiol; 1987 Jul; 22(7):590-6. PubMed ID: 3623863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures.
    Bucholz RW; Carlton A; Holmes R
    Clin Orthop Relat Res; 1989 Mar; (240):53-62. PubMed ID: 2537166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical and bone ingrowth properties of a polymer-coated, porous, synthetic, coralline hydroxyapatite bone-graft material.
    Tencer AF; Woodard PL; Swenson J; Brown KL
    Ann N Y Acad Sci; 1988; 523():157-72. PubMed ID: 2898222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gap healing enhanced by hydroxyapatite coating in dogs.
    Søballe K; Hansen ES; Brockstedt-Rasmussen H; Hjortdal VE; Juhl GI; Pedersen CM; Hvid I; Bünger C
    Clin Orthop Relat Res; 1991 Nov; (272):300-7. PubMed ID: 1657476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.