These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 30159978)
1. Phenazines in plant-beneficial Pseudomonas spp.: biosynthesis, regulation, function and genomics. Biessy A; Filion M Environ Microbiol; 2018 Nov; 20(11):3905-3917. PubMed ID: 30159978 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of Three Potato Pathogens by Phenazine-Producing Biessy A; Novinscak A; St-Onge R; Léger G; Zboralski A; Filion M mSphere; 2021 Jun; 6(3):e0042721. PubMed ID: 34077259 [TBL] [Abstract][Full Text] [Related]
3. Diversity of phytobeneficial traits revealed by whole-genome analysis of worldwide-isolated phenazine-producing Pseudomonas spp. Biessy A; Novinscak A; Blom J; Léger G; Thomashow LS; Cazorla FM; Josic D; Filion M Environ Microbiol; 2019 Jan; 21(1):437-455. PubMed ID: 30421490 [TBL] [Abstract][Full Text] [Related]
4. Metabolic and Genomic Traits of Phytobeneficial Phenazine-Producing Zboralski A; Biessy A; Savoie MC; Novinscak A; Filion M Appl Environ Microbiol; 2020 Feb; 86(4):. PubMed ID: 31811040 [TBL] [Abstract][Full Text] [Related]
5. Population structure and diversity of phenazine-1-carboxylic acid producing fluorescent Pseudomonas spp. from dryland cereal fields of central Washington State (USA). Parejko JA; Mavrodi DV; Mavrodi OV; Weller DM; Thomashow LS Microb Ecol; 2012 Jul; 64(1):226-41. PubMed ID: 22383119 [TBL] [Abstract][Full Text] [Related]
6. Phenazines and their role in biocontrol by Pseudomonas bacteria. Chin-A-Woeng TFC; Bloemberg GV; Lugtenberg BJJ New Phytol; 2003 Mar; 157(3):503-523. PubMed ID: 33873412 [TBL] [Abstract][Full Text] [Related]
7. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Mavrodi DV; Blankenfeldt W; Thomashow LS Annu Rev Phytopathol; 2006; 44():417-45. PubMed ID: 16719720 [TBL] [Abstract][Full Text] [Related]
8. Diversity and evolution of the phenazine biosynthesis pathway. Mavrodi DV; Peever TL; Mavrodi OV; Parejko JA; Raaijmakers JM; Lemanceau P; Mazurier S; Heide L; Blankenfeldt W; Weller DM; Thomashow LS Appl Environ Microbiol; 2010 Feb; 76(3):866-79. PubMed ID: 20008172 [TBL] [Abstract][Full Text] [Related]
9. Enzymatic Degradation of Phenazines Can Generate Energy and Protect Sensitive Organisms from Toxicity. Costa KC; Bergkessel M; Saunders S; Korlach J; Newman DK mBio; 2015 Oct; 6(6):e01520-15. PubMed ID: 26507234 [TBL] [Abstract][Full Text] [Related]
10. N-Acylhomoserine lactone quorum-sensing signalling in antagonistic phenazine-producing Pseudomonas isolates from the red cocoyam rhizosphere. De Maeyer K; D'aes J; Hua GKH; Perneel M; Vanhaecke L; Noppe H; Höfte M Microbiology (Reading); 2011 Feb; 157(Pt 2):459-472. PubMed ID: 21071496 [TBL] [Abstract][Full Text] [Related]
11. Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp. Mavrodi DV; Parejko JA; Mavrodi OV; Kwak YS; Weller DM; Blankenfeldt W; Thomashow LS Environ Microbiol; 2013 Mar; 15(3):675-86. PubMed ID: 22882648 [TBL] [Abstract][Full Text] [Related]
12. Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Mazzola M; Cook RJ; Thomashow LS; Weller DM; Pierson LS Appl Environ Microbiol; 1992 Aug; 58(8):2616-24. PubMed ID: 1514808 [TBL] [Abstract][Full Text] [Related]
13. Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals. Mavrodi DV; Mavrodi OV; Parejko JA; Bonsall RF; Kwak YS; Paulitz TC; Thomashow LS; Weller DM Appl Environ Microbiol; 2012 Feb; 78(3):804-12. PubMed ID: 22138981 [TBL] [Abstract][Full Text] [Related]
14. phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84. Delaney SM; Mavrodi DV; Bonsall RF; Thomashow LS J Bacteriol; 2001 Jan; 183(1):318-27. PubMed ID: 11114932 [TBL] [Abstract][Full Text] [Related]
15. Prevalence and Correlates of Phenazine Resistance in Culturable Bacteria from a Dryland Wheat Field. Perry EK; Newman DK Appl Environ Microbiol; 2022 Mar; 88(6):e0232021. PubMed ID: 35138927 [TBL] [Abstract][Full Text] [Related]
16. Irrigation differentially impacts populations of indigenous antibiotic-producing pseudomonas spp. in the rhizosphere of wheat. Mavrodi OV; Mavrodi DV; Parejko JA; Thomashow LS; Weller DM Appl Environ Microbiol; 2012 May; 78(9):3214-20. PubMed ID: 22389379 [TBL] [Abstract][Full Text] [Related]
17. N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. Wood DW; Gong F; Daykin MM; Williams P; Pierson LS J Bacteriol; 1997 Dec; 179(24):7663-70. PubMed ID: 9401023 [TBL] [Abstract][Full Text] [Related]
18. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields. Yang MM; Mavrodi DV; Mavrodi OV; Bonsall RF; Parejko JA; Paulitz TC; Thomashow LS; Yang HT; Weller DM; Guo JH Phytopathology; 2011 Dec; 101(12):1481-91. PubMed ID: 22070279 [TBL] [Abstract][Full Text] [Related]
19. Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Chin-A-Woeng TF; Bloemberg GV; Mulders IH; Dekkers LC; Lugtenberg BJ Mol Plant Microbe Interact; 2000 Dec; 13(12):1340-5. PubMed ID: 11106026 [TBL] [Abstract][Full Text] [Related]
20. Fungal ABC transporters and microbial interactions in natural environments. Schoonbeek HJ; Raaijmakers JM; De Waard MA Mol Plant Microbe Interact; 2002 Nov; 15(11):1165-72. PubMed ID: 12423022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]