BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 30159978)

  • 1. Phenazines in plant-beneficial Pseudomonas spp.: biosynthesis, regulation, function and genomics.
    Biessy A; Filion M
    Environ Microbiol; 2018 Nov; 20(11):3905-3917. PubMed ID: 30159978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of Three Potato Pathogens by Phenazine-Producing
    Biessy A; Novinscak A; St-Onge R; Léger G; Zboralski A; Filion M
    mSphere; 2021 Jun; 6(3):e0042721. PubMed ID: 34077259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of phytobeneficial traits revealed by whole-genome analysis of worldwide-isolated phenazine-producing Pseudomonas spp.
    Biessy A; Novinscak A; Blom J; Léger G; Thomashow LS; Cazorla FM; Josic D; Filion M
    Environ Microbiol; 2019 Jan; 21(1):437-455. PubMed ID: 30421490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic and Genomic Traits of Phytobeneficial Phenazine-Producing
    Zboralski A; Biessy A; Savoie MC; Novinscak A; Filion M
    Appl Environ Microbiol; 2020 Feb; 86(4):. PubMed ID: 31811040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Population structure and diversity of phenazine-1-carboxylic acid producing fluorescent Pseudomonas spp. from dryland cereal fields of central Washington State (USA).
    Parejko JA; Mavrodi DV; Mavrodi OV; Weller DM; Thomashow LS
    Microb Ecol; 2012 Jul; 64(1):226-41. PubMed ID: 22383119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenazines and their role in biocontrol by Pseudomonas bacteria.
    Chin-A-Woeng TFC; Bloemberg GV; Lugtenberg BJJ
    New Phytol; 2003 Mar; 157(3):503-523. PubMed ID: 33873412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation.
    Mavrodi DV; Blankenfeldt W; Thomashow LS
    Annu Rev Phytopathol; 2006; 44():417-45. PubMed ID: 16719720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity and evolution of the phenazine biosynthesis pathway.
    Mavrodi DV; Peever TL; Mavrodi OV; Parejko JA; Raaijmakers JM; Lemanceau P; Mazurier S; Heide L; Blankenfeldt W; Weller DM; Thomashow LS
    Appl Environ Microbiol; 2010 Feb; 76(3):866-79. PubMed ID: 20008172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic Degradation of Phenazines Can Generate Energy and Protect Sensitive Organisms from Toxicity.
    Costa KC; Bergkessel M; Saunders S; Korlach J; Newman DK
    mBio; 2015 Oct; 6(6):e01520-15. PubMed ID: 26507234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-Acylhomoserine lactone quorum-sensing signalling in antagonistic phenazine-producing Pseudomonas isolates from the red cocoyam rhizosphere.
    De Maeyer K; D'aes J; Hua GKH; Perneel M; Vanhaecke L; Noppe H; Höfte M
    Microbiology (Reading); 2011 Feb; 157(Pt 2):459-472. PubMed ID: 21071496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp.
    Mavrodi DV; Parejko JA; Mavrodi OV; Kwak YS; Weller DM; Blankenfeldt W; Thomashow LS
    Environ Microbiol; 2013 Mar; 15(3):675-86. PubMed ID: 22882648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats.
    Mazzola M; Cook RJ; Thomashow LS; Weller DM; Pierson LS
    Appl Environ Microbiol; 1992 Aug; 58(8):2616-24. PubMed ID: 1514808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals.
    Mavrodi DV; Mavrodi OV; Parejko JA; Bonsall RF; Kwak YS; Paulitz TC; Thomashow LS; Weller DM
    Appl Environ Microbiol; 2012 Feb; 78(3):804-12. PubMed ID: 22138981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84.
    Delaney SM; Mavrodi DV; Bonsall RF; Thomashow LS
    J Bacteriol; 2001 Jan; 183(1):318-27. PubMed ID: 11114932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevalence and Correlates of Phenazine Resistance in Culturable Bacteria from a Dryland Wheat Field.
    Perry EK; Newman DK
    Appl Environ Microbiol; 2022 Mar; 88(6):e0232021. PubMed ID: 35138927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Irrigation differentially impacts populations of indigenous antibiotic-producing pseudomonas spp. in the rhizosphere of wheat.
    Mavrodi OV; Mavrodi DV; Parejko JA; Thomashow LS; Weller DM
    Appl Environ Microbiol; 2012 May; 78(9):3214-20. PubMed ID: 22389379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere.
    Wood DW; Gong F; Daykin MM; Williams P; Pierson LS
    J Bacteriol; 1997 Dec; 179(24):7663-70. PubMed ID: 9401023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields.
    Yang MM; Mavrodi DV; Mavrodi OV; Bonsall RF; Parejko JA; Paulitz TC; Thomashow LS; Yang HT; Weller DM; Guo JH
    Phytopathology; 2011 Dec; 101(12):1481-91. PubMed ID: 22070279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot.
    Chin-A-Woeng TF; Bloemberg GV; Mulders IH; Dekkers LC; Lugtenberg BJ
    Mol Plant Microbe Interact; 2000 Dec; 13(12):1340-5. PubMed ID: 11106026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fungal ABC transporters and microbial interactions in natural environments.
    Schoonbeek HJ; Raaijmakers JM; De Waard MA
    Mol Plant Microbe Interact; 2002 Nov; 15(11):1165-72. PubMed ID: 12423022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.