These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 30159978)
21. Characteristics of biological control and mechanisms of Pseudomonas chlororaphis zm-1 against peanut stem rot. Liu F; Yang S; Xu F; Zhang Z; Lu Y; Zhang J; Wang G BMC Microbiol; 2022 Jan; 22(1):9. PubMed ID: 34986788 [TBL] [Abstract][Full Text] [Related]
22. Enhanced biosynthesis of phenazine-1-carboxamide by engineered Pseudomonas chlororaphis HT66. Peng H; Zhang P; Bilal M; Wang W; Hu H; Zhang X Microb Cell Fact; 2018 Jul; 17(1):117. PubMed ID: 30045743 [TBL] [Abstract][Full Text] [Related]
23. Biotechnological potential of a rhizosphere Pseudomonas aeruginosa strain producing phenazine-1-carboxylic acid and phenazine-1-carboxamide. Zhou L; Jiang HX; Sun S; Yang DD; Jin KM; Zhang W; He YW World J Microbiol Biotechnol; 2016 Mar; 32(3):50. PubMed ID: 26873561 [TBL] [Abstract][Full Text] [Related]
24. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Chin-A-Woeng TF; Thomas-Oates JE; Lugtenberg BJ; Bloemberg GV Mol Plant Microbe Interact; 2001 Aug; 14(8):1006-15. PubMed ID: 11497461 [TBL] [Abstract][Full Text] [Related]
25. Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. Perneel M; Heyrman J; Adiobo A; De Maeyer K; Raaijmakers JM; De Vos P; Höfte M J Appl Microbiol; 2007 Oct; 103(4):1007-20. PubMed ID: 17897205 [TBL] [Abstract][Full Text] [Related]
26. PhdA Catalyzes the First Step of Phenazine-1-Carboxylic Acid Degradation in Mycobacterium fortuitum. Costa KC; Moskatel LS; Meirelles LA; Newman DK J Bacteriol; 2018 May; 200(10):. PubMed ID: 29483162 [TBL] [Abstract][Full Text] [Related]
27. [Autoinduction of pyoluteorin and correlation between phenazine-1-carboxylic acid and pyoluteorin in Pseudomonas sp. M18]. Ge YH; Zhao YH; Chen LJ; Miao J; Wen L Wei Sheng Wu Xue Bao; 2007 Jun; 47(3):441-6. PubMed ID: 17672302 [TBL] [Abstract][Full Text] [Related]
28. Engineering Pseudomonas for phenazine biosynthesis, regulation, and biotechnological applications: a review. Bilal M; Guo S; Iqbal HMN; Hu H; Wang W; Zhang X World J Microbiol Biotechnol; 2017 Oct; 33(10):191. PubMed ID: 28975557 [TBL] [Abstract][Full Text] [Related]
29. Characterization of a phenazine-producing strain Pseudomonas chlororaphis GP72 with broad-spectrum antifungal activity from green pepper rhizosphere. Liu H; He Y; Jiang H; Peng H; Huang X; Zhang X; Thomashow LS; Xu Y Curr Microbiol; 2007 Apr; 54(4):302-6. PubMed ID: 17334842 [TBL] [Abstract][Full Text] [Related]
30. Complete Genome Sequence of Pseudomonas Parafulva PRS09-11288, a Biocontrol Strain Produces the Antibiotic Phenazine-1-carboxylic Acid. Zhang Y; Chen P; Ye G; Lin H; Ren D; Guo L; Zhu B; Wang Z Curr Microbiol; 2019 Sep; 76(9):1087-1091. PubMed ID: 29356878 [TBL] [Abstract][Full Text] [Related]
32. Sensitivity of Rhizoctonia Isolates to Phenazine-1-Carboxylic Acid and Biological Control by Phenazine-Producing Pseudomonas spp. Jaaffar AKM; Parejko JA; Paulitz TC; Weller DM; Thomashow LS Phytopathology; 2017 Jun; 107(6):692-703. PubMed ID: 28383281 [TBL] [Abstract][Full Text] [Related]
33. A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities. Jain R; Pandey A Microbiol Res; 2016 Sep; 190():63-71. PubMed ID: 27394000 [TBL] [Abstract][Full Text] [Related]
34. Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis (aureofaciens) strain 30-84. Maddula VS; Zhang Z; Pierson EA; Pierson LS Microb Ecol; 2006 Aug; 52(2):289-301. PubMed ID: 16897305 [TBL] [Abstract][Full Text] [Related]
35. Phloroglucinol Derivatives in Plant-Beneficial Biessy A; Filion M Metabolites; 2021 Mar; 11(3):. PubMed ID: 33804595 [TBL] [Abstract][Full Text] [Related]
36. Biocontrol of Potato Common Scab is Associated with High Pseudomonas fluorescens LBUM223 Populations and Phenazine-1-Carboxylic Acid Biosynthetic Transcript Accumulation in the Potato Geocaulosphere. Arseneault T; Goyer C; Filion M Phytopathology; 2016 Sep; 106(9):963-70. PubMed ID: 27088392 [TBL] [Abstract][Full Text] [Related]
37. Identification of traits shared by rhizosphere-competent strains of fluorescent pseudomonads. Ghirardi S; Dessaint F; Mazurier S; Corberand T; Raaijmakers JM; Meyer JM; Dessaux Y; Lemanceau P Microb Ecol; 2012 Oct; 64(3):725-37. PubMed ID: 22576821 [TBL] [Abstract][Full Text] [Related]
38. [Quorum sensing systems of regulation, synthesis of phenazine antibiotics, and antifungal (corrected) activity in rhizospheric bacterium Pseudomonas chlororaphis 449]. Veselova Ma; Klein Sh; Bass IA; Lipasova VA; Metlitskaia AZ; Ovadis MI; Chernin LS; Khmel' IA Genetika; 2008 Dec; 44(12):1617-26. PubMed ID: 19178080 [TBL] [Abstract][Full Text] [Related]
39. Negative cross-communication among wheat rhizosphere bacteria: effect on antibiotic production by the biological control bacterium Pseudomonas aureofaciens 30-84. Morello JE; Pierson EA; Pierson LS Appl Environ Microbiol; 2004 May; 70(5):3103-9. PubMed ID: 15128573 [TBL] [Abstract][Full Text] [Related]
40. Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a. D'aes J; Hua GK; De Maeyer K; Pannecoucque J; Forrez I; Ongena M; Dietrich LE; Thomashow LS; Mavrodi DV; Höfte M Phytopathology; 2011 Aug; 101(8):996-1004. PubMed ID: 21405991 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]