BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30160245)

  • 1. Circumventing the miscibility gap in InGaN nanowires emitting from blue to red.
    Roche E; André Y; Avit G; Bougerol C; Castelluci D; Réveret F; Gil E; Médard F; Leymarie J; Jean T; Dubrovskii VG; Trassoudaine A
    Nanotechnology; 2018 Nov; 29(46):465602. PubMed ID: 30160245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compositional control of homogeneous InGaN nanowires with the In content up to 90.
    Zeghouane M; Avit G; André Y; Bougerol C; Robin Y; Ferret P; Castelluci D; Gil E; Dubrovskii VG; Amano H; Trassoudaine A
    Nanotechnology; 2019 Jan; 30(4):044001. PubMed ID: 30457977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and Epitaxial Growth of Homogeneous
    Kim SU; Ra YH
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33374536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epitaxial growth of InGaN nanowire arrays for light emitting diodes.
    Hahn C; Zhang Z; Fu A; Wu CH; Hwang YJ; Gargas DJ; Yang P
    ACS Nano; 2011 May; 5(5):3970-6. PubMed ID: 21495684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy.
    Guo W; Zhang M; Banerjee A; Bhattacharya P
    Nano Lett; 2010 Sep; 10(9):3355-9. PubMed ID: 20701296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-colour light emission from InGaN nanowires monolithically grown on Si substrate by MBE.
    Gridchin VO; Kotlyar KP; Reznik RR; Dragunova AS; Kryzhanovskaya NV; Lendyashova VV; Kirilenko DA; Soshnikov IP; Shevchuk DS; Cirlin GG
    Nanotechnology; 2021 May; 32(33):. PubMed ID: 33975293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive model toward optimization of SAG In-rich InGaN nanorods by hydride vapor phase epitaxy.
    Hijazi H; Zeghouane M; Jridi J; Gil E; Castelluci D; Dubrovskii VG; Bougerol C; André Y; Trassoudaine A
    Nanotechnology; 2021 Apr; 32(15):155601. PubMed ID: 33434893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale optical properties of indium gallium nitride/gallium nitride nanodisk-in-rod heterostructures.
    Zhou X; Lu MY; Lu YJ; Jones EJ; Gwo S; Gradečak S
    ACS Nano; 2015 Mar; 9(3):2868-75. PubMed ID: 25661775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructural characterization of high indium-composition InXGa₁-XN epilayers grown on c-plane sapphire substrates.
    Jeong M; Lee HS; Han SK; Eun-Jung-Shin ; Hong SK; Lee JY; Park YC; Yang JM; Yao T
    Microsc Microanal; 2013 Aug; 19 Suppl 5():145-8. PubMed ID: 23920194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gallium Nitride Nanowires and Heterostructures: Toward Color-Tunable and White-Light Sources.
    Kuykendall TR; Schwartzberg AM; Aloni S
    Adv Mater; 2015 Oct; 27(38):5805-12. PubMed ID: 26032973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. InGaN nanowires with high InN molar fraction: growth, structural and optical properties.
    Zhang X; Lourenço-Martins H; Meuret S; Kociak M; Haas B; Rouvière JL; Jouneau PH; Bougerol C; Auzelle T; Jalabert D; Biquard X; Gayral B; Daudin B
    Nanotechnology; 2016 May; 27(19):195704. PubMed ID: 27041669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel wavelength-adjusting method in InGaN-based light-emitting diodes.
    Deng Z; Jiang Y; Ma Z; Wang W; Jia H; Zhou J; Chen H
    Sci Rep; 2013 Dec; 3():3389. PubMed ID: 24343166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. InGaN Platelets: Synthesis and Applications toward Green and Red Light-Emitting Diodes.
    Bi Z; Lenrick F; Colvin J; Gustafsson A; Hultin O; Nowzari A; Lu T; Wallenberg R; Timm R; Mikkelsen A; Ohlsson BJ; Storm K; Monemar B; Samuelson L
    Nano Lett; 2019 May; 19(5):2832-2839. PubMed ID: 30938533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-emitting-diodes based on ordered InGaN nanocolumns emitting in the blue, green and yellow spectral range.
    Bengoechea-Encabo A; Albert S; Lopez-Romero D; Lefebvre P; Barbagini F; Torres-Pardo A; Gonzalez-Calbet JM; Sanchez-Garcia MA; Calleja E
    Nanotechnology; 2014 Oct; 25(43):435203. PubMed ID: 25297338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy.
    Dong Z; André Y; Dubrovskii VG; Bougerol C; Leroux C; Ramdani MR; Monier G; Trassoudaine A; Castelluci D; Gil E
    Nanotechnology; 2017 Mar; 28(12):125602. PubMed ID: 28140362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct nucleation, morphology and compositional tuning of InAs
    Namazi L; Ghalamestani SG; Lehmann S; Zamani RR; Dick KA
    Nanotechnology; 2017 Apr; 28(16):165601. PubMed ID: 28346221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency Drop in Green InGaN/GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations.
    Auf der Maur M; Pecchia A; Penazzi G; Rodrigues W; Di Carlo A
    Phys Rev Lett; 2016 Jan; 116(2):027401. PubMed ID: 26824564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of the Vapor-Liquid-Solid Growth of Ternary III-V Nanowires in the Presence of Silicon.
    Hijazi H; Zeghouane M; Dubrovskii VG
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. InGaN nanopillars grown on silicon substrate using plasma assisted molecular beam epitaxy.
    Vajpeyi AP; Ajagunna AO; Tsagaraki K; Androulidaki M; Georgakilas A
    Nanotechnology; 2009 Aug; 20(32):325605. PubMed ID: 19620761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution phase synthesis of indium gallium phosphide alloy nanowires.
    Kornienko N; Whitmore DD; Yu Y; Leone SR; Yang P
    ACS Nano; 2015 Apr; 9(4):3951-60. PubMed ID: 25839336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.