These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 30160245)
1. Circumventing the miscibility gap in InGaN nanowires emitting from blue to red. Roche E; André Y; Avit G; Bougerol C; Castelluci D; Réveret F; Gil E; Médard F; Leymarie J; Jean T; Dubrovskii VG; Trassoudaine A Nanotechnology; 2018 Nov; 29(46):465602. PubMed ID: 30160245 [TBL] [Abstract][Full Text] [Related]
2. Compositional control of homogeneous InGaN nanowires with the In content up to 90. Zeghouane M; Avit G; André Y; Bougerol C; Robin Y; Ferret P; Castelluci D; Gil E; Dubrovskii VG; Amano H; Trassoudaine A Nanotechnology; 2019 Jan; 30(4):044001. PubMed ID: 30457977 [TBL] [Abstract][Full Text] [Related]
3. Instantaneous growth of single monolayers as the origin of spontaneous core-shell In Dubrovskii VG; Cirlin GE; Kirilenko DA; Kotlyar KP; Makhov IS; Reznik RR; Gridchin VO Nanoscale Horiz; 2024 Nov; 9(12):2360-2367. PubMed ID: 39415691 [TBL] [Abstract][Full Text] [Related]
4. Modeling and Epitaxial Growth of Homogeneous Kim SU; Ra YH Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33374536 [TBL] [Abstract][Full Text] [Related]
5. Epitaxial growth of InGaN nanowire arrays for light emitting diodes. Hahn C; Zhang Z; Fu A; Wu CH; Hwang YJ; Gargas DJ; Yang P ACS Nano; 2011 May; 5(5):3970-6. PubMed ID: 21495684 [TBL] [Abstract][Full Text] [Related]
6. Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. Guo W; Zhang M; Banerjee A; Bhattacharya P Nano Lett; 2010 Sep; 10(9):3355-9. PubMed ID: 20701296 [TBL] [Abstract][Full Text] [Related]
7. Multi-colour light emission from InGaN nanowires monolithically grown on Si substrate by MBE. Gridchin VO; Kotlyar KP; Reznik RR; Dragunova AS; Kryzhanovskaya NV; Lendyashova VV; Kirilenko DA; Soshnikov IP; Shevchuk DS; Cirlin GG Nanotechnology; 2021 May; 32(33):. PubMed ID: 33975293 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive model toward optimization of SAG In-rich InGaN nanorods by hydride vapor phase epitaxy. Hijazi H; Zeghouane M; Jridi J; Gil E; Castelluci D; Dubrovskii VG; Bougerol C; André Y; Trassoudaine A Nanotechnology; 2021 Apr; 32(15):155601. PubMed ID: 33434893 [TBL] [Abstract][Full Text] [Related]
9. Nanoscale optical properties of indium gallium nitride/gallium nitride nanodisk-in-rod heterostructures. Zhou X; Lu MY; Lu YJ; Jones EJ; Gwo S; Gradečak S ACS Nano; 2015 Mar; 9(3):2868-75. PubMed ID: 25661775 [TBL] [Abstract][Full Text] [Related]
10. Microstructural characterization of high indium-composition InXGa₁-XN epilayers grown on c-plane sapphire substrates. Jeong M; Lee HS; Han SK; Eun-Jung-Shin ; Hong SK; Lee JY; Park YC; Yang JM; Yao T Microsc Microanal; 2013 Aug; 19 Suppl 5():145-8. PubMed ID: 23920194 [TBL] [Abstract][Full Text] [Related]
11. Gallium Nitride Nanowires and Heterostructures: Toward Color-Tunable and White-Light Sources. Kuykendall TR; Schwartzberg AM; Aloni S Adv Mater; 2015 Oct; 27(38):5805-12. PubMed ID: 26032973 [TBL] [Abstract][Full Text] [Related]
12. InGaN nanowires with high InN molar fraction: growth, structural and optical properties. Zhang X; Lourenço-Martins H; Meuret S; Kociak M; Haas B; Rouvière JL; Jouneau PH; Bougerol C; Auzelle T; Jalabert D; Biquard X; Gayral B; Daudin B Nanotechnology; 2016 May; 27(19):195704. PubMed ID: 27041669 [TBL] [Abstract][Full Text] [Related]
13. A novel wavelength-adjusting method in InGaN-based light-emitting diodes. Deng Z; Jiang Y; Ma Z; Wang W; Jia H; Zhou J; Chen H Sci Rep; 2013 Dec; 3():3389. PubMed ID: 24343166 [TBL] [Abstract][Full Text] [Related]
14. InGaN Platelets: Synthesis and Applications toward Green and Red Light-Emitting Diodes. Bi Z; Lenrick F; Colvin J; Gustafsson A; Hultin O; Nowzari A; Lu T; Wallenberg R; Timm R; Mikkelsen A; Ohlsson BJ; Storm K; Monemar B; Samuelson L Nano Lett; 2019 May; 19(5):2832-2839. PubMed ID: 30938533 [TBL] [Abstract][Full Text] [Related]
15. Light-emitting-diodes based on ordered InGaN nanocolumns emitting in the blue, green and yellow spectral range. Bengoechea-Encabo A; Albert S; Lopez-Romero D; Lefebvre P; Barbagini F; Torres-Pardo A; Gonzalez-Calbet JM; Sanchez-Garcia MA; Calleja E Nanotechnology; 2014 Oct; 25(43):435203. PubMed ID: 25297338 [TBL] [Abstract][Full Text] [Related]
16. Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy. Dong Z; André Y; Dubrovskii VG; Bougerol C; Leroux C; Ramdani MR; Monier G; Trassoudaine A; Castelluci D; Gil E Nanotechnology; 2017 Mar; 28(12):125602. PubMed ID: 28140362 [TBL] [Abstract][Full Text] [Related]
17. Direct nucleation, morphology and compositional tuning of InAs Namazi L; Ghalamestani SG; Lehmann S; Zamani RR; Dick KA Nanotechnology; 2017 Apr; 28(16):165601. PubMed ID: 28346221 [TBL] [Abstract][Full Text] [Related]
18. Efficiency Drop in Green InGaN/GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations. Auf der Maur M; Pecchia A; Penazzi G; Rodrigues W; Di Carlo A Phys Rev Lett; 2016 Jan; 116(2):027401. PubMed ID: 26824564 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamics of the Vapor-Liquid-Solid Growth of Ternary III-V Nanowires in the Presence of Silicon. Hijazi H; Zeghouane M; Dubrovskii VG Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401772 [TBL] [Abstract][Full Text] [Related]
20. InGaN nanopillars grown on silicon substrate using plasma assisted molecular beam epitaxy. Vajpeyi AP; Ajagunna AO; Tsagaraki K; Androulidaki M; Georgakilas A Nanotechnology; 2009 Aug; 20(32):325605. PubMed ID: 19620761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]