These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30160729)

  • 1. Low-loss flexible Parylene photonic waveguides for optical implants.
    Reddy JW; Chamanzar M
    Opt Lett; 2018 Sep; 43(17):4112-4115. PubMed ID: 30160729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parylene photonics: a flexible, broadband optical waveguide platform with integrated micromirrors for biointerfaces.
    Reddy JW; Lassiter M; Chamanzar M
    Microsyst Nanoeng; 2020; 6():85. PubMed ID: 34567695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the pedestal process for reducing sidewall scattering in photonic waveguides.
    Melo EG; Alayo MI; Carvalho DO
    Opt Express; 2017 May; 25(9):9755-9760. PubMed ID: 28468355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability.
    Zhu S; Lo GQ; Kwong DL
    Opt Express; 2010 Nov; 18(24):25283-91. PubMed ID: 21164876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method.
    Takigawa R; Higurashi E; Kawanishi T; Asano T
    Opt Express; 2014 Nov; 22(22):27733-8. PubMed ID: 25401917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of dry etching parameters for fabrication of polysilicon waveguides with smooth sidewall using a capacitively coupled plasma reactor.
    Cheemalapati S; Ladanov M; Winskas J; Pyayt A
    Appl Opt; 2014 Sep; 53(25):5745-9. PubMed ID: 25321372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-loss silicon nitride photonic ICs for near-infrared wavelength bandwidth.
    Buzaverov KA; Baburin AS; Sergeev EV; Avdeev SS; Lotkov ES; Andronik M; Stukalova VE; Baklykov DA; Dyakonov IV; Skryabin NN; Saygin MY; Kulik SP; Ryzhikov IA; Rodionov IA
    Opt Express; 2023 May; 31(10):16227-16242. PubMed ID: 37157706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of large-core, high-Δ optical waveguides in polymers.
    Kagami M; Ito H; Ichikawa T; Kato S; Matsuda M; Takahashi N
    Appl Opt; 1995 Feb; 34(6):1041-6. PubMed ID: 21037631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erbium-ytterbium co-doped aluminium oxide waveguide amplifiers fabricated by reactive co-sputtering and wet chemical etching.
    Bonneville DB; Frankis HC; Wang R; Bradley JDB
    Opt Express; 2020 Sep; 28(20):30130-30140. PubMed ID: 33114897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides.
    Hu J; Tarasov V; Carlie N; Feng NN; Petit L; Agarwal A; Richardson K; Kimerling L
    Opt Express; 2007 Sep; 15(19):11798-807. PubMed ID: 19547543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction.
    Lee KK; Lim DR; Kimerling LC; Shin J; Cerrina F
    Opt Lett; 2001 Dec; 26(23):1888-90. PubMed ID: 18059727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low loss etchless silicon photonic waveguides.
    Cardenas J; Poitras CB; Robinson JT; Preston K; Chen L; Lipson M
    Opt Express; 2009 Mar; 17(6):4752-7. PubMed ID: 19293905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photonic crystal waveguides on silicon rich nitride platform.
    Debnath K; Bucio TD; Al-Attili A; Khokhar AZ; Saito S; Gardes FY
    Opt Express; 2017 Feb; 25(4):3214-3221. PubMed ID: 28241537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation on roughness-induced scattering loss of small-core polymer waveguides for single-mode optical interconnect applications.
    Shi Y; Ma L; Zhuang Y; He Z
    Opt Express; 2020 Dec; 28(26):38733-38744. PubMed ID: 33379436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of channel waveguides from sol-gel-processed polyvinylpyrrolidone/ SiO(2) composite materials.
    Yoshida M; Prasad PN
    Appl Opt; 1996 Mar; 35(9):1500-6. PubMed ID: 21085265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides.
    Zhu S; Fang Q; Yu MB; Lo GQ; Kwong DL
    Opt Express; 2009 Nov; 17(23):20891-9. PubMed ID: 19997326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implantable Glass Waveguides and Coating Materials for Chronic Optical Medical Applications.
    Alt MT; Mittnacht A; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4595-4598. PubMed ID: 30441375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible photonic components in glass substrates.
    Huang S; Li M; Garner SM; Li MJ; Chen KP
    Opt Express; 2015 Aug; 23(17):22532-43. PubMed ID: 26368220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides.
    Dai D; Wang Z; Bauters JF; Tien MC; Heck MJ; Blumenthal DJ; Bowers JE
    Opt Express; 2011 Jul; 19(15):14130-6. PubMed ID: 21934775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low loss, flexible single-mode polymer photonics.
    Zuo H; Yu S; Gu T; Hu J
    Opt Express; 2019 Apr; 27(8):11152-11159. PubMed ID: 31052963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.