BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30160791)

  • 1. Dynamic perspectives into the mechanisms of mutation-induced p53-DNA binding loss and inactivation using active perturbation theory: Structural and molecular insights toward the design of potent reactivators in cancer therapy.
    Olotu FA; Soliman MES
    J Cell Biochem; 2019 Jan; 120(1):951-966. PubMed ID: 30160791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the Effect of the G245S Single Point Mutation on the Structure of p53 and the Binding of the Protein to DNA.
    Lepre MG; Omar SI; Grasso G; Morbiducci U; Deriu MA; Tuszynski JA
    Molecules; 2017 Aug; 22(8):. PubMed ID: 28813011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics and Molecular Mechanisms of p53 Transcriptional Activation.
    Offutt TL; Ieong PU; Demir Ö; Amaro RE
    Biochemistry; 2018 Nov; 57(46):6528-6537. PubMed ID: 30388364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and Function of p53-DNA Complexes with Inactivation and Rescue Mutations: A Molecular Dynamics Simulation Study.
    Kamaraj B; Bogaerts A
    PLoS One; 2015; 10(8):e0134638. PubMed ID: 26244575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From mutational inactivation to aberrant gain-of-function: Unraveling the structural basis of mutant p53 oncogenic transition.
    Olotu FA; Soliman MES
    J Cell Biochem; 2018 Mar; 119(3):2646-2652. PubMed ID: 29058783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysical simulations and structure-based modeling of residue interaction networks in the tumor suppressor proteins reveal functional role of cancer mutation hotspots in molecular communication.
    Verkhivker GM
    Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):210-225. PubMed ID: 30339916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wild type p53 function in p53
    Sundar D; Yu Y; Katiyar SP; Putri JF; Dhanjal JK; Wang J; Sari AN; Kolettas E; Kaul SC; Wadhwa R
    J Exp Clin Cancer Res; 2019 Feb; 38(1):103. PubMed ID: 30808373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common cancer mutations R175H and R273H drive the p53 DNA-binding domain towards aggregation-prone conformations.
    Li L; Li X; Tang Y; Lao Z; Lei J; Wei G
    Phys Chem Chem Phys; 2020 May; 22(17):9225-9232. PubMed ID: 32307496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the
    Chitrala KN; Nagarkatti M; Nagarkatti P; Yeguvapalli S
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31216622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural modulation of p53TAD1-TAZ2 complex upon mutations and post-translational modification.
    Ghosh A; Ganguly D
    J Biomol Struct Dyn; 2023 Jan; 41(1):176-185. PubMed ID: 34787057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation.
    Kamada R; Nomura T; Anderson CW; Sakaguchi K
    J Biol Chem; 2011 Jan; 286(1):252-8. PubMed ID: 20978130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutants of the tumour suppressor p53 L1 loop as second-site suppressors for restoring DNA binding to oncogenic p53 mutations: structural and biochemical insights.
    Merabet A; Houlleberghs H; Maclagan K; Akanho E; Bui TT; Pagano B; Drake AF; Fraternali F; Nikolova PV
    Biochem J; 2010 Mar; 427(2):225-36. PubMed ID: 20113312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics study on the inhibition mechanisms of ReACp53 peptide for p53-R175H mutant aggregation.
    Lei J; Cai M; Shen Y; Lin D; Deng X
    Phys Chem Chem Phys; 2021 Oct; 23(40):23032-23041. PubMed ID: 34612239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating DNA Binding and Conformational Variation in Temperature Sensitive p53 Cancer Mutants Using QM-MM Simulations.
    Koulgi S; Achalere A; Sonavane U; Joshi R
    PLoS One; 2015; 10(11):e0143065. PubMed ID: 26579714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting Y220C mutated p53 by Foeniculum vulgare-derived phytochemicals as cancer therapeutics.
    Garg S; Singh J; Verma SR
    J Mol Model; 2023 Jan; 29(2):55. PubMed ID: 36700982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of temperature on the p53-DNA binding interactions and their dynamical behavior: comparing the wild type to the R248Q mutant.
    Barakat K; Issack BB; Stepanova M; Tuszynski J
    PLoS One; 2011; 6(11):e27651. PubMed ID: 22110706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of R249S carcinogenic and H168R-R249S suppressor mutations on p53-DNA interaction, a multi scale computational study.
    Rauf SM; Ismael M; Sahu KK; Suzuki A; Koyama M; Tsuboi H; Hatakeyama N; Endou A; Takaba H; Del Carpio CA; Kubo M; Miyamoto A
    Comput Biol Med; 2010 May; 40(5):498-508. PubMed ID: 20403587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in silico algorithm for identifying stabilizing pockets in proteins: test case, the Y220C mutant of the p53 tumor suppressor protein.
    Bromley D; Bauer MR; Fersht AR; Daggett V
    Protein Eng Des Sel; 2016 Sep; 29(9):377-90. PubMed ID: 27503952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimentally guided structural modeling and dynamics analysis of Hsp90-p53 interactions: allosteric regulation of the Hsp90 chaperone by a client protein.
    Blacklock K; Verkhivker GM
    J Chem Inf Model; 2013 Nov; 53(11):2962-78. PubMed ID: 24191708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.