BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 30160941)

  • 1. Diffusion Measurements of Swimming Enzymes with Fluorescence Correlation Spectroscopy.
    Günther JP; Börsch M; Fischer P
    Acc Chem Res; 2018 Sep; 51(9):1911-1920. PubMed ID: 30160941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule diffusometry reveals no catalysis-induced diffusion enhancement of alkaline phosphatase as proposed by FCS experiments.
    Chen Z; Shaw A; Wilson H; Woringer M; Darzacq X; Marqusee S; Wang Q; Bustamante C
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21328-21335. PubMed ID: 32817484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity enhancement in fluorescence correlation spectroscopy of multiple species using time-gated detection.
    Lamb DC; Schenk A; Röcker C; Scalfi-Happ C; Nienhaus GU
    Biophys J; 2000 Aug; 79(2):1129-38. PubMed ID: 10920042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Single Molecule Imaging of Enhanced Enzyme Diffusion.
    Xu M; Ross JL; Valdez L; Sen A
    Phys Rev Lett; 2019 Sep; 123(12):128101. PubMed ID: 31633990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence lifetime correlation spectroscopy: Basics and applications.
    Ghosh A; Karedla N; Thiele JC; Gregor I; Enderlein J
    Methods; 2018 May; 140-141():32-39. PubMed ID: 29454862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of a Fluorophore Photo-Physics on the Lipid Vesicle Diffusion Coefficient Studied by Fluorescence Correlation Spectroscopy.
    Drabik D; Przybyło M; Sikorski A; Langner M
    J Fluoresc; 2016 Mar; 26(2):661-9. PubMed ID: 26695945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion.
    Starr TE; Thompson NL
    Biophys J; 2001 Mar; 80(3):1575-84. PubMed ID: 11222318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Successful FCS experiment in nonstandard conditions.
    Banachowicz E; Patkowski A; Meier G; Klamecka K; Gapiński J
    Langmuir; 2014 Jul; 30(29):8945-55. PubMed ID: 24992167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental Aspects of Enzyme-Powered Micro- and Nanoswimmers.
    Patiño T; Arqué X; Mestre R; Palacios L; Sánchez S
    Acc Chem Res; 2018 Nov; 51(11):2662-2671. PubMed ID: 30346732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aldolase Does Not Show Enhanced Diffusion in Dynamic Light Scattering Experiments.
    Zhang Y; Armstrong MJ; Bassir Kazeruni NM; Hess H
    Nano Lett; 2018 Dec; 18(12):8025-8029. PubMed ID: 30484320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence correlation spectroscopy and fluorescence lifetime imaging microscopy.
    Breusegem SY; Levi M; Barry NP
    Nephron Exp Nephrol; 2006; 103(2):e41-9. PubMed ID: 16543763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence correlation spectroscopy detects galanin receptor diversity on insulinoma cells.
    Pramanik A; Olsson M; Langel U ; Bartfai T; Rigler R
    Biochemistry; 2001 Sep; 40(36):10839-45. PubMed ID: 11535060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence correlation spectroscopy close to a fluctuating membrane.
    Fradin C; Abu-Arish A; Granek R; Elbaum M
    Biophys J; 2003 Mar; 84(3):2005-20. PubMed ID: 12609903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence correlation spectroscopy: molecular complexing in solution and in living cells.
    Bulseco DA; Wolf DE
    Methods Cell Biol; 2013; 114():489-524. PubMed ID: 23931520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational changes of the H+-ATPase from Escherichia coli upon nucleotide binding detected by single molecule fluorescence.
    Börsch M; Turina P; Eggeling C; Fries JR; Seidel CA; Labahn A; Gräber P
    FEBS Lett; 1998 Oct; 437(3):251-4. PubMed ID: 9824301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme Catalysis To Power Micro/Nanomachines.
    Ma X; Hortelão AC; Patiño T; Sánchez S
    ACS Nano; 2016 Oct; 10(10):9111-9122. PubMed ID: 27666121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative characterization of the binding of fluorescently labeled colchicine to tubulin in vitro using fluorescence correlation spectroscopy.
    Van Craenenbroeck E; Engelborghs Y
    Biochemistry; 1999 Apr; 38(16):5082-8. PubMed ID: 10213611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolving inhomogeneity using lifetime-weighted fluorescence correlation spectroscopy.
    Ishii K; Tahara T
    J Phys Chem B; 2010 Sep; 114(38):12383-91. PubMed ID: 20812709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying lipid-protein interaction by fluorescence correlation spectroscopy (FCS).
    Melo AM; Prieto M; Coutinho A
    Methods Mol Biol; 2014; 1076():575-95. PubMed ID: 24108645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning fluorescence correlation spectroscopy: a tool for probing microsecond dynamics of surface-bound fluorescent species.
    Xiao Y; Buschmann V; Weston KD
    Anal Chem; 2005 Jan; 77(1):36-46. PubMed ID: 15623276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.